Lagrangian subbundles and codimension 3 subcanonical subschemes

被引:28
作者
Eisenbud, D [1 ]
Popescu, S
Walter, C
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Columbia Univ, Dept Math, New York, NY 10027 USA
[3] Univ Nice, CNRS, UMR 6621, F-06108 Nice, France
关键词
D O I
10.1215/S0012-7094-01-10731-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Gorenstein subcanonical codimension 3 subscheme Z subset of X = P-N, N greater than or equal to 4, can be realized as the locus along which two Lagrangian subbundles of a twisted orthogonal bundle meet degenerately and conversely. We extend this result to singular Z and all quasi-projective ambient schemes X under the necessary hypothesis that Z is strongly subcanonical in a sense defined below. A central point is that a pair of Lagrangian subbundles can be transformed locally into an alternating map. In the local case our structure theorem reduces to that of D. Buchsbaum and D. Eisenbud [6] and says that Z is Pfaffian. We also prove codimension 1 symmetric and skew-symmetric analogues of our structure theorems.
引用
收藏
页码:427 / 467
页数:41
相关论文
共 26 条
[1]   YOUNG-DIAGRAMS AND IDEALS OF PFAFFIANS [J].
ABEASIS, S ;
DELFRA, A .
ADVANCES IN MATHEMATICS, 1980, 35 (02) :158-178
[2]   Derived Witt groups of a scheme [J].
Balmer, P .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 141 (02) :101-129
[3]   ON COMPLEX VECTOR-BUNDLES ON RATIONAL THREEFOLDS [J].
BANICA, C ;
PUTINAR, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 97 (MAR) :279-288
[4]   ALGEBRA STRUCTURES FOR FINITE FREE RESOLUTIONS, AND SOME STRUCTURE THEOREMS FOR IDEALS OF CODIMENSION .3. [J].
BUCHSBAUM, DA ;
EISENBUD, D .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :447-485
[5]  
Casnati G, 1998, J DIFFER GEOM, V50, P415
[6]  
Casnati G., 1996, J ALGEBRAIC GEOM, V5, P439
[8]  
CATANESE F, 1997, P S PURE MATH 1, V62, P3
[9]   ON THE CLASS OF BRILL-NOETHER LOCI FOR PRYM VARIETIES [J].
DECONCINI, C ;
PRAGACZ, P .
MATHEMATISCHE ANNALEN, 1995, 302 (04) :687-697
[10]  
EAGON JA, 1973, J REINE ANGEW MATH, V262, P205