Domain transfer multi-instance dictionary learning

被引:1
作者
Wang, Ke [1 ]
Liu, Jiayong [2 ]
Gonzalez, Daniel [3 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610064, Sichuan, Peoples R China
[3] Catholic Univ Murcia, Dept Comp Sci, Murcia 30107, Spain
关键词
Multi-instance learning; Domain transfer learning; Classifier adaptation; Gradient descent; RECONSTRUCTION; REPRESENTATION; SURFACE; ROBUST;
D O I
10.1007/s00521-016-2406-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we invest the domain transfer learning problem with multi-instance data. We assume we already have a well-trained multi-instance dictionary and its corresponding classifier from the source domain, which can be used to represent and classify the bags. But it cannot be directly used to the target domain. Thus we propose to adapt them to the target domain by adding an adaptive term to the source domain classifier. The adaptive function is a linear function based on a domain transfer multi-instance dictionary. Given a target domain bag, we first map it to a bag-level feature space using the domain transfer dictionary and then apply a linear adaptive function to its baglevel feature vector. To learn the domain transfer dictionary and the adaptive function parameter, we simultaneously minimize the average classification error of the target domain classifier over the target domain training set, and the complexities of both the adaptive function parameter and the domain transfer dictionary. The minimization problem is solved by an iterative algorithm which updates the dictionary and the function parameter alternately. Experiments over several benchmark data sets show the advantage of the proposed method over existing state-of-the-art domain transfer multi-instance learning methods.
引用
收藏
页码:S983 / S992
页数:10
相关论文
共 42 条
[1]  
[Anonymous], 29 AAAI C ART INT
[2]  
[Anonymous], AAAI C ART INT
[3]   Content-Based Video Copy Detection Benchmarking at TRECVID [J].
Awad, George ;
Over, Paul ;
Kraaij, Wessel .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2014, 32 (03)
[4]   Dual-color fluorescence cross-correlation spectroscopy on a planar optofluidic chip [J].
Chen, A. ;
Eberle, M. M. ;
Lunt, E. J. ;
Liu, S. ;
Leake, K. ;
Rudenko, M. I. ;
Hawkins, A. R. ;
Schmidt, H. .
LAB ON A CHIP, 2011, 11 (08) :1502-1506
[5]   MILES: Multiple-Instance Learning via Embedded instance Selection [J].
Chen, Yixin ;
Bi, Jinbo ;
Wang, James Z. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :1931-1947
[6]  
Ding ZM, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P3453
[7]   Domain Transfer Multiple Kernel Learning [J].
Duan, Lixin ;
Tsang, Ivor W. ;
Xu, Dong .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) :465-479
[8]  
Duan LX, 2009, PROC CVPR IEEE, P1375, DOI [10.1109/CVPR.2009.5206747, 10.1109/CVPRW.2009.5206747]
[9]  
Fan XN, 2014, AAAI CONF ARTIF INTE, P2439
[10]  
Fan XN, 2014, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P200