The socle of a Leavitt path algebra

被引:36
作者
Pino, G. Aranda [1 ]
Barquero, D. Martfn [2 ]
Gonzalez, C. Martin [3 ]
Molina, M. Siles [3 ]
机构
[1] Ctr Rech Math, E-08193 Barcelona, Spain
[2] Univ Malaga, Dept Matemat Aplicada, E-29071 Malaga, Spain
[3] Univ Malaga, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
D O I
10.1016/j.jpaa.2007.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize the minimal left ideals of a Leavitt path algebra as those which are isomorphic to principal left ideals generated by line points; that is, by vertices whose trees contain neither bifurcations nor closed paths. Moreover, we show that the socle of a Leavitt path algebra is the two-sided ideal generated by these line point vertices. This characterization allows us to compute the socle of certain algebras that arise as the Leavitt path algebra of a row-finite graph. A complete description of the socle of a Leavitt path algebra is given: it is a locally matricial algebra. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:500 / 509
页数:10
相关论文
共 17 条
[1]   Finite-dimensional leavitt path algebras [J].
Abrams, G. ;
Aranda Pino, G. ;
Siles Molina, M. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :753-762
[2]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[3]  
ABRAMS G, IN PRESS ISRAEL J MA
[4]   Purely infinite simple Leavitt path algebras [J].
Abrams, Gene ;
Pino, Gonzalo Aranda .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 207 (03) :553-563
[5]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[6]  
ARA P, IN PRESS P AM MATH S
[7]   The ideal structure of the C*-algebras of infinite graphs [J].
Bates, T ;
Hong, JH ;
Raeburn, I ;
Szymanski, W .
ILLINOIS JOURNAL OF MATHEMATICS, 2002, 46 (04) :1159-1176
[8]  
Deicke K, 2003, INDIANA U MATH J, V52, P963
[9]  
DIEUDONNE J, 1942, B SOC MATH FRANCE, V70, P46
[10]  
HERSTEIN IN, 1976, CHICAGO LECT MATHS