EXACT THREE POSITIVE SOLUTIONS TO A SECOND-ORDER NEUMANN BOUNDARY VALUE PROBLEM WITH SINGULAR NONLINEARITY

被引:0
作者
Feng, Yuqiang [1 ]
Li, Guangjun [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430065, Peoples R China
[2] Shandong Kaiwen Coll Sci & Technol, Dept Basic Course, Jinan 250200, Peoples R China
来源
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING | 2010年 / 35卷 / 2D期
关键词
Neumann boundary value problem; positive solution; existence; exact multiplicity; EXACT MULTIPLICITY; EQUATIONS; RESONANCE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, we establish the exact multiplicity result for a second-order Neumann boundary value problem {u ''(t) + f(u(t)) = h(t), 0 <= t <= 1, u'(0) = u'(1) = 0. where f is singular at zero. Wirtinger inequality, comparison theorem, maximum principle and lower and upper solutions method are employed to prove the main theorem.
引用
收藏
页码:189 / 195
页数:7
相关论文
共 11 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
Cañada A, 2005, MATH INEQUAL APPL, V8, P459
[3]   Stability and exact multiplicity of periodic solutions of duffing equations with cubic nonlinearities [J].
Chen, Hongbin ;
Li, Yi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (12) :3925-3932
[4]  
Chu J.F., 2007, J MATH ANAL APPL, V67, P2815
[5]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[6]   Optimal bounds for bifurcation values of a superlinear periodic problem [J].
Ortega, R ;
Zhang, MR .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :119-132
[7]   Semilinear Neumann boundary value problems on a rectangle [J].
Shi, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (08) :3117-3154
[8]  
SUDHASREE G, 2001, ELECTRON J QUAL THEO, V4, P1
[9]   Multiple positive solutions to second-order Neumann boundary value problems [J].
Sun, JP ;
Li, WT .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :187-194
[10]  
WANG HZ, 1995, SIAM J CONTROL OPTIM, V33, P1312, DOI 10.1137/S036301299324532X