Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression

被引:42
作者
Nodari, Laura Rota [1 ]
Ferrari, Daniela [1 ]
Giani, Fabrizio [1 ]
Bossi, Mario [2 ]
Rodriguez-Menendez, Virginia [2 ]
Tredici, Giovanni [2 ]
Delia, Domenico [3 ]
Vescovi, Angelo Luigi [1 ,4 ]
De Filippis, Lidia [1 ]
机构
[1] Univ Milano Bicocca, Dept Biotechnol & Biosci, Milan, Italy
[2] Univ Milano Bicocca, Dept Neurosci & Biomed Technol, Milan, Italy
[3] Fdn IRCSS Ist Nazl Tumori, Dept Expt Oncol, Milan, Italy
[4] IRCCS Casa Sollievo Sofferenza, San Giovanni Rotondo, Italy
关键词
EPIDERMAL-GROWTH-FACTOR; SUBVENTRICULAR ZONE; PROGENITOR CELLS; NEURONAL DAMAGE; ADULT BRAIN; HUMAN CNS; TRANSPLANTATION; MODEL; NEUROPROTECTION; NEUROGENESIS;
D O I
10.1371/journal.pone.0014035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and beta-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders.
引用
收藏
页数:13
相关论文
共 54 条
[1]   ESTIMATION OF NUCLEAR POPULATION FROM MICROTOME SECTIONS [J].
ABERCROMBIE, M .
ANATOMICAL RECORD, 1946, 94 (02) :239-247
[2]   Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas [J].
Aboody, KS ;
Brown, A ;
Rainov, NG ;
Bower, KA ;
Liu, SX ;
Yang, W ;
Small, JE ;
Herrlinger, U ;
Ourednik, V ;
Black, PM ;
Breakefield, XO ;
Snyder, EY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (23) :12846-12851
[3]   Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters [J].
Amendola, M ;
Venneri, MA ;
Biffi, A ;
Vigna, E ;
Naldini, L .
NATURE BIOTECHNOLOGY, 2005, 23 (01) :108-116
[4]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[5]   Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms [J].
Bacigaluppi, Marco ;
Pluchino, Stefano ;
Jametti, Luca Peruzzotti ;
Kilic, Ertugrul ;
Kilic, Uelkan ;
Salani, Giuliana ;
Brambilla, Elena ;
West, Mark J. ;
Comi, Giancarlo ;
Martino, Gianvito ;
Hermann, Dirk M. .
BRAIN, 2009, 132 :2239-2251
[6]   Autologous mesenchymal stem cell transplantation in stroke patients [J].
Bang, OY ;
Lee, JS ;
Lee, PH ;
Lee, G .
ANNALS OF NEUROLOGY, 2005, 57 (06) :874-882
[7]   Reproducible loss of CA1 neurons following carotid artery occlusion combined with halothane-induced hypotension [J].
Bendel, O ;
Alkass, K ;
Bueters, T ;
von Euler, M ;
von Euler, G .
BRAIN RESEARCH, 2005, 1033 (02) :135-142
[8]   Neural transplantation for the treatment of Parkinson's disease [J].
Björklund, A ;
Dunnett, SB ;
Brundin, P ;
Stoessl, AJ ;
Freed, CR ;
Breeze, RE ;
Levivier, M ;
Peschanski, M ;
Studer, L ;
Barker, R .
LANCET NEUROLOGY, 2003, 2 (07) :437-445
[9]  
Boockvar J, 2005, NEUROSURGERY, V56, pN6
[10]   Degeneration of newly formed CA1 neurons following global ischemia in the rat [J].
Bueters, Tjerk ;
von Euler, Mia ;
Bendel, Olof ;
von Euler, Gabriel .
EXPERIMENTAL NEUROLOGY, 2008, 209 (01) :114-124