SEMI-ANALYTICAL METHOD OF FINISHED ELEMENTS IN ELASTIC AND ELASTIC-PLASTIC POSITION FOR CURVILINE PRISMATIC OBJECTS

被引:1
作者
Bazhenov, V. A. [1 ]
Shkril, A. A. [1 ]
Maksimyuk, Yu., V [1 ]
Martyniuk, I. Yu. [1 ]
Maksimyuk, O. V. [2 ]
机构
[1] Kyiv Natl Univ Construct & Architecture, Tech Sci, Povitroflotsky Ave 31, UA-03037 Kiev, Ukraine
[2] Kyiv Natl Univ Construct & Architecture, Tech Sci, Povitroflotsky Ave 31, UA-03037 Kiev, Ukraine
来源
OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES | 2020年 / 105期
关键词
finite element method; semi-analytical finite element method; block iteration method; linear and nonlinear equations; elastic and elastic-plastic deformation; Michlin polynomials; curvilinear prismatic bodies;
D O I
10.32347/2410-2547.2020.105.24-32
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In [4,5,6], the solving relations and the algorithm of the method of block iterations of solving linear and nonlinear equations by the semivanalytic finite element method for curvilinear inhomogeneous prismatic bodies are realized. This paper presents the results of the effectiveness of the semi-analytical finite element method for the consideration of curvilinear prismatic objects in elastic and elastic-plastic formulation in comparison with the classical finite element method.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 6 条
[1]  
Bazhenov V.A, 2005, Semi-analytical method of finite elements in problems of destruction of 3D bodies
[2]  
Bazhenov V.A., 2010, Nonlinear deformation and stability of elastic shells with inhomogeneous structure
[3]  
Bazhenov V. A., 2019, CHYSELNE MODELIUVANN
[4]  
Huliar O. I., 2020, BUILDING CONSTRUCTIO, P72
[5]   BASIC RELATIONSHIPS FOR PHYSICALLY AND GEOMETRICALLY NONLINEAR PROBLEMS OF DEFORMATION OF PRIMATIC BODIES [J].
Maksimyuk, Yu, V ;
Pyskunov, S. O. ;
Shkryl, A. A. ;
Maksimyuk, O., V .
OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES, 2020, (104) :255-264
[6]  
Maksymik Yu. V., 2020, Budivelni konstruktsii teoriia I praktyka, V7, P101