Independence number and clique minors

被引:8
|
作者
Kawarabayashi, Ken-ichi
Song, Zi-Xia
机构
[1] Natl Inst Informat, Chiyoda Ku, Tokyo, Japan
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
Hadwiger's conjecture; independence number; graph minor;
D O I
10.1002/jgt.20268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hadwiger number h(G) of a graph G is the maximum integer t such that K-t is a minor of G. Since X(G) . alpha(G) >= vertical bar G vertical bar, Hadwiger's conjecture implies that h(G) . alpha(G) >= vertical bar G vertical bar, where alpha(G) and vertical bar G vertical bar denote the independence number and the number of vertices of G, respectively. Motivated by this fact, it is shown that (2 alpha(G) - 2) . h(G) >= vertical bar G vertical bar for every graph G with alpha(G) >= 3. This improves a theorem of Duchet and Meyniel and a recent improvement due to Kawarabayashi et al. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 50 条
  • [41] Regular graphs with equal matching number and independence number
    Yang, Zixuan
    Lu, Hongliang
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 86 - 90
  • [42] Cubic graphs with equal independence number and matching number
    Mohr, Elena
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [43] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [44] A lower bound on the independence number of a graph
    Harant, J
    DISCRETE MATHEMATICS, 1998, 188 (1-3) : 239 - 243
  • [45] Independence and matching number of some graphs
    Ming Chen
    Yusheng Li
    Yiting Yang
    Journal of Combinatorial Optimization, 2019, 37 : 1342 - 1350
  • [46] Maximum genus, independence number and girth
    Yuanqiu H.
    Yanpei L.
    Chinese Annals of Mathematics, 2000, 21 (1) : 77 - 82
  • [47] Independence number of products of Kneser graphs
    Bresar, Bostjan
    Valencia-Pabon, Mario
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1017 - 1027
  • [48] Unified bounds for the independence number of graphs
    Zhou, Jiang
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2025, 77 (01): : 97 - 117
  • [49] MAXIMUM GENUS,INDEPENDENCE NUMBER AND GIRTH
    HUANG YUANQIU
    LIU YANPEI
    ChineseAnnalsofMathematics, 2000, (01) : 77 - 82
  • [50] A research on independence number in cubic graphs
    Liu Donglin
    Wang Chunxiang
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON INNOVATION & MANAGEMENT, 2005, : 1283 - 1287