The Entries of Haar-Invariant Matrices from the Classical Compact Groups

被引:19
作者
Jiang, Tiefeng [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
关键词
Random matrix; Haar measure; Classical compact group; Probability inequality; Independence; Gaussian distribution; THEOREMS;
D O I
10.1007/s10959-009-0241-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Gamma(n) = (gamma(ij))(nxn) be a random matrix with the Haar probability measure on the orthogonal group O(n), the unitary group U(n), or the symplectic group Sp(n). Given 1 <= m < n, a probability inequality for a distance between (gamma(ij))(nxm) and some mn independent F-valued normal random variables is obtained, where F = R, C, or H (the set of real quaternions). The result is universal for the three cases. In particular, the inequality for Sp(n) is new.
引用
收藏
页码:1227 / 1243
页数:17
相关论文
共 19 条
[1]  
[Anonymous], THESIS U PARIS 6
[2]  
Borel E., 1906, INTRO GEOMETRIQUE QU
[3]  
D'Aristotile A, 2003, INST MATH S, V41, P97
[4]  
Dembo A., 1998, LARGE DEVIATIONS TEC
[5]  
DIACONIS P, 1987, ANN I H POINCARE-PR, V23, P397
[6]  
DIACONIS PW, 1992, SCAND J STAT, V19, P289
[7]   Uncertainty principles and ideal atomic decomposition [J].
Donoho, DL ;
Huo, XM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2845-2862
[8]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[9]  
GALLARDO L, 1983, ANN U CLEMONT, V69, P192
[10]   Maxima of entries of Haar distributed matrices [J].
Jiang, TF .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (01) :121-144