Computational analysis of microbial community using amplicon sequencing of 16S rRNA gene

被引:0
作者
Singh, N. [1 ]
Singh, M. P. [2 ]
机构
[1] Univ Allahabad, Ctr Bioinformat, Allahabad, Uttar Pradesh, India
[2] Univ Allahabad, Ctr Biotechnol, Allahabad, Uttar Pradesh, India
来源
RESEARCH JOURNAL OF BIOTECHNOLOGY | 2022年 / 17卷 / 05期
关键词
Operational Taxonomic Units (OTUs); QIIME; Microbial community; Bioremediation; METAGENOMICS; DIVERSITY;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The microbial community has various essential applications in multiple sections such as pharmaceuticals, enzyme production, food industry and waste management. Microbes produce metabolites (crucial products for the industrial process) and utilize substrate which plays a vital role in solid waste degradation. The computational metagenomic approach is considered as a solution for these problems. Microbial species are widely used for the bioremediation of solid waste materials. In this study, the solid waste contains wheat straw and human faeces occupied in a semi-continuous bio-converter condition for 105 days. The metagenomic data of six samples of solid waste were retrieved in FASTQ format from the ENA database. The sequence reads are analyzed using the QIIME (Quantitative Insights into Microbial Ecology) pipeline. This study includes demultiplexing, quality checking, OTU (Operational Taxonomic Unit) clustering, taxonomic assignment, phylogenetic analysis, biodiversity analysis and visualizations of solid waste samples. Results showed that solid waste metagenome is characterized by phyla Firmicutes, Bacteroidetes and Proteobacteria and genera Faecalibacterium, Roseburia, Pseudomonas and Bacillus are abundant in all samples. These microbial communities have potential application in the degradation of lignocellulosic waste. Hence, these microorganisms may be used to treat several solid waste materials and are considered an effective bioremediating agent for several pollutants.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 39 条
[1]   A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome [J].
Allali, Imane ;
Arnold, Jason W. ;
Roach, Jeffrey ;
Cadenas, Maria Belen ;
Butz, Natasha ;
Hassan, Hosni M. ;
Koci, Matthew ;
Ballou, Anne ;
Mendoza, Mary ;
Ali, Rizwana ;
Azcarate-Peril, M. Andrea .
BMC MICROBIOLOGY, 2017, 17
[2]   Marine metagenomics, a valuable tool for enzymes and bioactive compounds discovery [J].
Barone, Rosalba ;
De Santi, Concetta ;
Esposito, Fortunato Palma ;
Tedesco, Pietro ;
Galati, Federica ;
Visone, Marco ;
Di Scala, Alessia ;
De Pascale, Donatella .
FRONTIERS IN MARINE SCIENCE, 2014, 1
[3]  
Bragg L, 2014, METHODS MOL BIOL, V1096, P183, DOI 10.1007/978-1-62703-712-9_15
[4]   A review of methods and databases for metagenomic classification and assembly [J].
Breitwieser, Florian P. ;
Lu, Jennifer ;
Salzberg, Steven L. .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1125-1139
[5]   Software for pre-processing Illumina next-generation sequencing short read sequences [J].
Chen, Chuming ;
Khaleel, Sari S. ;
Huang, Hongzhan ;
Wu, Cathy H. .
SOURCE CODE FOR BIOLOGY AND MEDICINE, 2014, 9 (01)
[6]   Toward automatic reconstruction of a highly resolved tree of life [J].
Ciccarelli, FD ;
Doerks, T ;
von Mering, C ;
Creevey, CJ ;
Snel, B ;
Bork, P .
SCIENCE, 2006, 311 (5765) :1283-1287
[7]   Computational method to predict mitochondrially imported proteins and their targeting sequences [J].
Claros, MG ;
Vincens, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :779-786
[8]   Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB [J].
DeSantis, T. Z. ;
Hugenholtz, P. ;
Larsen, N. ;
Rojas, M. ;
Brodie, E. L. ;
Keller, K. ;
Huber, T. ;
Dalevi, D. ;
Hu, P. ;
Andersen, G. L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) :5069-5072
[9]  
Duncan SH, 2002, INT J SYST EVOL MICR, V52, P1615, DOI [10.1099/ijs.0.02143-0, 10.1099/00207713-52-5-1615]
[10]  
Ghosh A., 2019, Encyclopedia of Bioinformatics and Computational Biology, P184, DOI 10.1016/B978-0-12-809633-8.20178-7