AF Classification from a Short Single Lead ECG Recording: the PhysioNet/Computing in Cardiology Challenge 2017

被引:458
作者
Clifford, Gari D. [1 ,2 ]
Liu, Chengyu [1 ,3 ]
Moody, Benjamin [4 ]
Lehman, Li-Wei H. [4 ]
Silva, Ikaro [4 ]
Li, Qiao [1 ]
Johnson, A. E. [4 ]
Mark, Roger G. [4 ]
机构
[1] Emory Univ, Dept Biomed Informat, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Southeast Univ, Sch Instrument Sci & Engn, Nanjing, Jiangsu, Peoples R China
[4] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
来源
2017 COMPUTING IN CARDIOLOGY (CINC) | 2017年 / 44卷
基金
美国国家卫生研究院;
关键词
D O I
10.22489/CinC.2017.065-469
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The PhysioNet/Computing in Cardiology (CinC) Challenge 2017 focused on differentiating AF from noise, normal or other rhythms in short term (from 9-61 s) ECG recordings performed by patients. A total of 12,186 ECGs were used: 8,528 in the public training set and 3,658 in the private hidden test set. Due to the high degree of inter-expert disagreement between a significant fraction of the expert labels we implemented a mid-competition bootstrap approach to expert relabeling of the data, levering the best performing Challenge entrants' algorithms to identify contentious labels. A total of 75 independent teams entered the Challenge using a variety of traditional and novel methods, ranging from random forests to a deep learning approach applied to the raw data in the spectral domain. Four teams won the Challenge with an equal high F1 score (averaged across all classes) of 0.83, although the top 11 algorithms scored within 2% of this. A combination of 45 algorithms identified using LASSO achieved an F1 of 0.87, indicating that a voting approach can boost performance.
引用
收藏
页数:4
相关论文
共 4 条
[1]  
Camm AJ, 2010, EUR HEART J, V31, P2369, DOI [10.1093/eurheartj/ehq278, 10.1093/europace/euq350]
[2]   Atrial fibrillation [J].
Lip, Gregory Y. H. ;
Fauchier, Laurent ;
Freedman, Saul B. ;
Van Gelder, Isabelle ;
Natale, Andrea ;
Gianni, Carola ;
Nattel, Stanley ;
Potpara, Tatjana ;
Rienstra, Michiel ;
Tse, Hung-Fat ;
Lane, Deirdre A. .
NATURE REVIEWS DISEASE PRIMERS, 2016, 2 :1-26
[3]  
Zhu T, 2013, COMPUTING CARDIOLOGY, V40, P249
[4]   Crowd-Sourced Annotation of ECG Signals Using Contextual Information [J].
Zhu, Tingting ;
Johnson, Alistair E. W. ;
Behar, Joachim ;
Clifford, Gari D. .
ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (04) :871-884