Survey on the application of deep learning in algorithmic trading

被引:7
作者
Wang, Yongfeng [1 ]
Yan, Guofeng [1 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou, Peoples R China
来源
DATA SCIENCE IN FINANCE AND ECONOMICS | 2021年 / 1卷 / 04期
关键词
d eep learning; algorithmic trading; t rading strategy; price prediction; arbitrage; CONVOLUTIONAL NEURAL-NETWORKS; PREDICTION; LSTM;
D O I
10.3934/DSFE.2021019
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Algorithmic trading is one of the most concerned directions in financial applications. Compared with traditional trading strategies, algorithmic trading applications perform forecasting and arbitrage with higher efficiency and more stable performance. Numerous studies on algorithmic trading models using deep learning have been conducted to perform trading forecasting and analysis. In this article, we firstly summarize several deep learning methods that have shown good performance in algorithmic trading applications, and briefly introduce some applications of deep learning in algorithmic trading. We then try to provide the latest snapshot application for algorithmic trading based on deep learning technology, and show the different implementations of the developed algorithmic trading model. Finally, some possible research issues are suggested in the future. The prime objectives of this paper are to provide a comprehensive research progress of deep learning applications in algorithmic trading, and benefit for subsequent research of computer program trading systems.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 50 条
  • [31] A Novel Algorithmic Trading Approach Based on Reinforcement Learning
    Li Xucheng
    Peng Zhihao
    2019 11TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2019), 2019, : 394 - 398
  • [32] The virtue of simplicity: On machine learning models in algorithmic trading
    Hansen, Kristian Bondo
    BIG DATA & SOCIETY, 2020, 7 (01):
  • [33] Algorithmic Forex Trading Using Q-learning
    Zahrah, Hasna Haifa
    Tirtawangsa, Jimmy
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT I, 2023, 675 : 24 - 35
  • [34] Survey on the application of deep learning in the Internet of Things
    Shabnam Shadroo
    Amir Masoud Rahmani
    Ali Rezaee
    Telecommunication Systems, 2022, 79 : 601 - 627
  • [35] Survey on the application of deep learning in the Internet of Things
    Shadroo, Shabnam
    Rahmani, Amir Masoud
    Rezaee, Ali
    TELECOMMUNICATION SYSTEMS, 2022, 79 (04) : 601 - 627
  • [36] A Survey of the Application of Deep Learning in Computer Vision
    Liu Yuexia
    Cheng Yunfei
    Wang Wu
    GLOBAL INTELLIGENCE INDUSTRY CONFERENCE (GIIC 2018), 2018, 10835
  • [37] Hybrid Deep Reinforcement Learning for Pairs Trading
    Kim, Sang-Ho
    Park, Deog-Yeong
    Lee, Ki-Hoon
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [38] Algorithmic stock trading based on ensemble deep neural networks trained with time graph
    Yilmaz, Muhammed
    Keskin, Mustafa Mert
    Ozbayoglu, Ahmet Murat
    APPLIED SOFT COMPUTING, 2024, 163
  • [39] A Comprehensive Survey on the Application of Deep and Reinforcement Learning Approaches in Autonomous Driving
    Ben Elallid, Badr
    Benamar, Nabil
    Hafid, Abdelhakim Senhaji
    Rachidi, Tajjeeddine
    Mrani, Nabil
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 7366 - 7390
  • [40] Application of evolutionary computation for rule discovery in stock algorithmic trading: A literature review
    Hu, Yong
    Liu, Kang
    Zhang, Xiangzhou
    Su, Lijun
    Ngai, E. W. T.
    Liu, Mei
    APPLIED SOFT COMPUTING, 2015, 36 : 534 - 551