Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective

被引:56
作者
Zhou, Jun-Hao [1 ]
Zhang, Ya-Wen [1 ]
机构
[1] Peking Univ, Beijing Natl Lab Mol Sci, State Key Lab Rare Earth Mat Chem & Applicat, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Che, Beijing 100871, Peoples R China
基金
北京市自然科学基金;
关键词
SELECTIVE ELECTROCHEMICAL REDUCTION; IN-SN ALLOY; CO2; REDUCTION; AMMONIA-SYNTHESIS; HIGH-EFFICIENCY; HYDROGEN EVOLUTION; HIGHLY EFFICIENT; ENHANCED ACTIVITY; AQUEOUS CO2; FORMIC-ACID;
D O I
10.1039/c8re00111a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, the electrochemical reduction of carbon dioxide (CO2RR) and the reduction of nitrogen (NRR) have attracted increasing attention due to their potential to transform energy from renewable and clean sources to chemical energy stored in value-added chemicals, such as hydrocarbons, alcohols and ammonia (NH3). Meanwhile, CO2RR can also reduce the global carbon footprint and address global climate change, while NRR may significantly improve the energy efficiency of NH3 production. However, because CO2 and N-2 molecules are inert, electrocatalysts with low overpotentials, high selectivities and superior faradaic efficiencies (FE) are required to enhance these two kinetically slow reactions. For the first time, this review discusses the similarities and differences between CO2RR and NRR in the following aspects: (1) fundamental theory of the reaction mechanisms and the corresponding catalyst design principles; (2) reaction systems and product analysis methods; (3) recent advances in heterogeneous electrocatalysts synthesized from different metals with various compositions, structures and morphologies. Much progress has been achieved to improve catalytic performance towards CO2RR and NRR. Finally, an outlook of future developments for CO2RR and NRR is proposed.
引用
收藏
页码:591 / 625
页数:35
相关论文
共 207 条
[1]   Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design [J].
Abghoui, Younes ;
Garden, Anna L. ;
Hlynsson, Valtyr Freyr ;
Bjorgvinsdottir, Snaedis ;
Olafsdottir, Hrefna ;
Skulason, Egill .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (07) :4909-4918
[2]   ENERGY STORAGE Chemical storage of renewable energy [J].
Ager, Joel W. ;
Lapkin, Alexei A. .
SCIENCE, 2018, 360 (6390) :707-708
[3]   Poly-Amide Modified Copper Foam Electrodes for Enhanced Electrochemical Reduction of Carbon Dioxide [J].
Ahn, Sunyhik ;
Klyukin, Konstantin ;
Wakeham, Russell J. ;
Rudd, Jennifer A. ;
Lewis, Aled R. ;
Alexander, Shirin ;
Carla, Francesco ;
Alexandrov, Vitaly ;
Andreoli, Enrico .
ACS CATALYSIS, 2018, 8 (05) :4132-4142
[4]   Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.8Gd0.18Ca0.02O2-δ composite cathode [J].
Amar, Ibrahim A. ;
Lan, Rong ;
Humphreys, John ;
Tao, Shanwen .
CATALYSIS TODAY, 2017, 286 :51-56
[5]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[6]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[7]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[8]   Understanding the Effects of Au Morphology on CO2 Electrocatalysis [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (08) :4274-4280
[9]   Selective Heterogeneous CO2 Electroreduction to Methanol [J].
Back, Seoin ;
Kim, Heejin ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (02) :965-971
[10]   Exclusive Formation of Formic Acid from CO2 Electroreduction by a Tunable Pd-Sn Alloy [J].
Bai, Xiaofang ;
Chen, Wei ;
Zhao, Chengcheng ;
Li, Shenggang ;
Song, Yanfang ;
Ge, Ruipeng ;
Wei, Wei ;
Sun, Yuhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) :12219-12223