Borderline Weighted Estimates for Commutators of Fractional Integrals

被引:1
作者
Wang, Zhidan [1 ]
Wu, Huoxiong [2 ]
Xue, Qingying [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
来源
ANALYSIS IN THEORY AND APPLICATIONS | 2021年 / 37卷 / 03期
关键词
Commutators; fractional integrals; borderline weighted estimates; Fefferman-Stein inequality; NORM INEQUALITIES; SINGULAR-INTEGRALS;
D O I
10.4208/ata.2021.lu80.08
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I-alpha,I-(b) over right arrow be the multilinear commutators of the fractional integrals I-alpha with the symbol (b) over right arrow = (b(1),..., b(k)). We show that the constant of borderline weighted estimates for I-alpha is 1/epsilon, and for I-alpha,I-(b) over right arrow is 1/epsilon(k+1) with each b(i) belongs to the Orlicz space Osc(exp) L(s)i.
引用
收藏
页码:404 / 425
页数:22
相关论文
共 22 条
[1]  
Carro MJ, 2005, INDIANA U MATH J, V54, P627
[2]   Weighted estimates for a class of multilinear fractional type operators [J].
Chen, Xi ;
Xue, Qingying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) :355-373
[3]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[4]   Weighted endpoint estimates for commutators of fractional integrals [J].
Cruz-Uribe, D. ;
Fiorenza, Hartford A. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) :153-160
[5]   Endpoint estimates and weighted norm inequalities for commutators of fractional integrals [J].
Cruz-Uribe, D ;
Fiorenza, A .
PUBLICACIONS MATEMATIQUES, 2003, 47 (01) :103-131
[6]  
Cruz-Uribe DV, 2011, OPER THEORY ADV APPL, V215, P3, DOI 10.1007/978-3-0348-0072-3
[7]   Weak estimates for commutators of fractional integral operators [J].
Ding, Y ;
Lu, SZ ;
Zhang, P .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (07) :877-888
[8]   Borderline weak-type estimates for singular integrals and square functions [J].
Domingo-Salazar, Carlos ;
Lacey, Michael ;
Rey, Guillermo .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 :63-73
[9]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[10]   The L(log L)ε endpoint estimate for maximal singular integral operators [J].
Hytonen, Tuomas ;
Perez, Carlos .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (01) :605-626