Levy flights in quenched random force fields

被引:73
作者
Fogedby, HC [1 ]
机构
[1] Aarhus Univ, Inst Phys & Astron, DK-8000 Aarhus C, Denmark
[2] NORDITA, DK-2100 Copenhagen 0, Denmark
关键词
D O I
10.1103/PhysRevE.58.1690
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Levy flights, characterized by the microscopic step index f, are for f<2 (the case of rare events) considered in short-range and long-range quenched random force fields with arbitrary vector character to first loop order in an expansion about the critical dimension 2f-2 in the short-range case and the critical fall-off exponent 2f-2 in the long-range case. By means of a dynamic renormalization-group analysis based on the momentum shell integration method, we determine flows, fixed point, and the associated scaling properties for the probability distribution and the frequency and wave number dependent diffusion coefficient. Unlike the case of ordinary Brownian motion in a quenched force field characterized by a single critical dimension or fall-off exponent d=2, two critical dimensions appear in the Levy case. A critical dimension (or fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous scaling behavior, i.e., algebraic spatial behavior and long time tails, and a critical dimension (or fall-off exponent) d=2f-2 below which the farce correlations characterized by a nontrivial fixed point become relevant. As a general result we find in all cases that the dynamic exponent z, characterizing the mean square displacement, locks onto the Levy index f, independent of dimension and independent of the presence of weak quenched disorder.
引用
收藏
页码:1690 / 1712
页数:23
相关论文
共 53 条
  • [1] ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
  • [2] EXCITATION DYNAMICS IN RANDOM ONE-DIMENSIONAL SYSTEMS
    ALEXANDER, S
    BERNASCONI, J
    SCHNEIDER, WR
    ORBACH, R
    [J]. REVIEWS OF MODERN PHYSICS, 1981, 53 (02) : 175 - 198
  • [3] ANOMALOUS DIFFUSION IN STEADY FLUID-FLOW THROUGH A POROUS-MEDIUM
    ARONOVITZ, JA
    NELSON, DR
    [J]. PHYSICAL REVIEW A, 1984, 30 (04): : 1948 - 1954
  • [4] RENORMALIZED FIELD-THEORY OF CRITICAL DYNAMICS
    BAUSCH, R
    JANSSEN, HK
    WAGNER, H
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 24 (01): : 113 - 127
  • [5] BLUMEN A, 1984, PHYS REV LETT, V53, P1301, DOI 10.1103/PhysRevLett.53.1301
  • [6] TRANSPORT ASPECTS IN ANOMALOUS DIFFUSION - LEVY WALKS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    [J]. PHYSICAL REVIEW A, 1989, 40 (07) : 3964 - 3974
  • [7] ANOMALOUS DIFFUSION IN THE KURAMOTO-SIVASHINSKY EQUATION
    BOHR, T
    PIKOVSKY, A
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (19) : 2892 - 2895
  • [8] ANOMALOUS DIFFUSION IN RANDOM-MEDIA OF ANY DIMENSIONALITY
    BOUCHAUD, JP
    COMTET, A
    GEORGES, A
    LEDOUSSAL, P
    [J]. JOURNAL DE PHYSIQUE, 1987, 48 (09): : 1445 - 1450
  • [9] ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS
    BOUCHAUD, JP
    GEORGES, A
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5): : 127 - 293
  • [10] FIELD-THEORY RENORMALIZATION AND CRITICAL DYNAMICS ABOVE T - HELIUM, ANTI-FERROMAGNETS, AND LIQUID-GAS SYSTEMS
    DEDOMINICIS, C
    PELITI, L
    [J]. PHYSICAL REVIEW B, 1978, 18 (01) : 353 - 376