Graph state secret sharing in higher-dimensional systems

被引:1
作者
Fortescue, Ben [1 ]
Keet, Adrian [1 ]
Markham, Damian [2 ]
Sanders, Barry C. [1 ]
机构
[1] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[2] Telecom ParisTech, LTCI, CNRS, F-75014 Paris, France
来源
QUANTUM COMMUNICATIONS AND QUANTUM IMAGING VIII | 2010年 / 7815卷
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum information; secret sharing; graph state; quantum key distribution; entanglement;
D O I
10.1117/12.860711
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a formalism within which, using entangled graph states of prime-dimensional systems, a variety of different secret-sharing schemes (involving both quantum and classical secrets and quantum and classical channels shared between parties) may be unified. We review the explicit protocols we have found for three varieties of secret sharing within this formalism, including some for which the analogous formalism using qubit graph states is not sufficient.
引用
收藏
页数:7
相关论文
共 15 条
[1]  
BAHRAMGIRI M, 2006, ARXIVQUANTPH0610267
[2]   Quantum encodings in spin systems and harmonic oscillators [J].
Bartlett, SD ;
de Guise, H ;
Sanders, BC .
PHYSICAL REVIEW A, 2002, 65 (05) :4
[3]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[4]   Subsystem stabilizer codes cannot have a universal set of transversal gates for even one encoded qudit [J].
Chen, Xie ;
Chung, Hyeyoun ;
Cross, Andrew W. ;
Zeng, Bei ;
Chuang, Isaac L. .
PHYSICAL REVIEW A, 2008, 78 (01)
[5]  
Gheorghiu V., 2009, ARXIV09122017
[6]   Encoding a qubit in an oscillator [J].
Gottesman, D ;
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW A, 2001, 64 (01) :123101-1231021
[7]  
Gottesman Daniel, 1997, THESIS CALTECH
[8]  
HEIN M, 2006, P INT SCH PHYS ENRIC, V162
[9]   Quantum secret sharing [J].
Hillery, M ;
Buzek, V ;
Berthiaume, A .
PHYSICAL REVIEW A, 1999, 59 (03) :1829-1834
[10]  
Keet A., 2010, ARXIV10044619