In vivo 3D FD OCT of subpleural lung parenchyma in the intact thorax

被引:0
|
作者
Meissner, S. [1 ]
Schnabel, C. [1 ]
Knels, L. [2 ]
Koch, E. [1 ]
机构
[1] Tech Univ Dresden, Med Fac Carl Gustav Carus, D-8027 Dresden, Germany
[2] Tech Univ Dresden, Med Fac Carl Gustav Carus, Inst Anat, Dresden, Germany
来源
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XIV | 2010年 / 7554卷
关键词
alveolar dynamics; lung mechanics; acute lung injury; optical coherence tomography;
D O I
10.1117/12.841704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In vivo determination of three-dimensional and dynamic geometries of alveolar structures with adequate resolution is essential to develop numerical models of the lung. To gain insight into the dynamics of alveoli a thorax window was prepared in anesthetized rabbits by removal of muscle tissue between 3(rd) and 4(th) rib without harming the parietal pleura. The transparent parietal pleura allows contact-free imaging by intra-vital microscopy (IVM) and 3D optical coherence tomography (3D-OCT). We have demonstrated that it is possible to acquire the identical region in the inspiratory and expiratory phase, and that OCT in this animal model is suitable for generating 3D geometry of in vivo lung parenchyma. The 3D data sets of the fine structure of the lung beneath the pleura could provide a basis for the development of three-dimensional numerical models of the lung.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] 3D OCT imaging in clinical settings: toward quantitative measurements of retinal structures
    Zawadzki, Robert J.
    Fuller, Alfred R.
    Zhao, Mingtao
    Wiley, David F.
    Choi, Stacey S.
    Bower, Bradley A.
    Hamann, Bernd
    Izatt, Joseph A.
    Werner, John S.
    OPHTHALMIC TECHNOLOGIES XVI, 2006, 6138
  • [42] 3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images
    Zhang, Jiong
    Qiao, Yuchuan
    Sarabi, Mona Sharifi
    Khansari, Maziyar M.
    Gahm, Jin K.
    Kashani, Amir H.
    Shi, Yonggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1335 - 1346
  • [43] Automatic Identification and Intuitive Map Representation of the Epiretinal Membrane Presence in 3D OCT Volumes
    Baamonde, Sergio
    de Moura, Joaquim
    Novo, Jorge
    Charlon, Pablo
    Ortega, Marcos
    SENSORS, 2019, 19 (23)
  • [44] Automated classification of coronary plaque calcification in OCT pullbacks with 3D deep neural networks
    He, Chunliu
    Wang, Jiaqiu
    Yin, Yifan
    Li, Zhiyong
    JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (09)
  • [45] Eye Movement Correction for 3D OCT Volume by using Saliency and Center Bias Constraint
    Fu, Huazhu
    Xu, Yanwu
    Wong, Damon Wing Kee
    Liu, Jiang
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 1536 - 1539
  • [46] Mapping the 3D Connectivity of the Rat Inner Retinal Vascular Network Using OCT Angiography
    Leahy, Conor
    Radhakrishnan, Harsha
    Weiner, Geoffrey
    Goldberg, Jeffrey L.
    Srinivasan, Vivek J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (10) : 5785 - 5793
  • [47] A Spatiotemporal Model for Precise and Efficient Fully-Automatic 3D Motion Correction in OCT
    Ploner, Stefan
    Chen, Siyu
    Won, Jungeun
    Husvogt, Lennart
    Breininger, Katharina
    Schottenhamml, Julia
    Fujimoto, James
    Maier, Andreas
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 517 - 527
  • [48] A.I. Pipeline for Accurate Retinal Layer Segmentation Using OCT 3D Images
    Goswami, Mayank
    PHOTONICS, 2023, 10 (03)
  • [49] 3D ORTHOGONAL SD-OCT VOLUMES REGISTRATION FOR THE ENHANCEMENT OF PORES IN LAMINA CRIBROSA
    Ding, Nan
    Rossant, Florence
    Urien, Helene
    Sublime, Jeremie
    Paques, Michel
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [50] High accuracy 3D data acquisition using co-registered OCT and Kinect
    Rajput, Omer
    Antoni, Sven-Thomas
    Otte, Christoph
    Saathoff, Thore
    Matthaeus, Lars
    Schlaefer, Alexander
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2016, : 32 - 37