On periodic groups of odd period n ≥ 1003

被引:13
作者
Atabekyan, V. S. [1 ]
机构
[1] Yerevan State Univ, Yerevan, Armenia
关键词
periodic group; simple group; group of bounded period; variety of groups of a given exponent; Adyan-Lysenok theorem;
D O I
10.1134/S0001434607090179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, using the Adyan-Lysenok theorem claiming that, for any odd nurnber n > 1003, there is an infinite group each of whose proper Subgroups is contained in a cyclic subgroup of order 71, it is proved that the set of groups with this property has the cardinality of the continuum (for a given n). Further, it is proved that, for m >= k >= 2 and for any odd n >= 1003, the m-generated free n-periodic group is residually both a group of the above type and a k-generated free n-periodic group, and it does not satisfy the ascending and descending chain conditions for normal subgroups either.
引用
收藏
页码:443 / 447
页数:5
相关论文
共 13 条
  • [1] Adian S. I., 1979, Proc. Steklov Inst. Math, V142, P1
  • [2] Adyan S. I., 1991, IZV AKAD NAUK SSSR M, V55, P933
  • [3] Adyan S.I., 1979, BURNSIDE PROBLEM IDE
  • [4] ADYAN SI, 1979, SOV MATH DOKL, V19, P910
  • [5] ADYAN SI, 1982, MATH USSR IZV, V19, P215, DOI 10.1070/IM1982v019n02ABEH001414
  • [6] ATABEKYAN VS, APPROXIMATION SUBGRO
  • [7] ATABEKYAN VS, 2 REMARKS GROUPS BOU
  • [8] GENERATING GROUPS OF CERTAIN PRODUCT VARIETIES
    GUPTA, N
    LEVIN, F
    [J]. ARCHIV DER MATHEMATIK, 1978, 30 (02) : 113 - 117
  • [9] Higman Graham, 1951, J. London Math. Soc., V26, P61
  • [10] NEUMANN H, 1969, VARIETIES GROUPS