Control by Learning in a Temperature System using a Maximum Sensibility Neural Network

被引:0
作者
Cabrera-Gaonal, D. [1 ]
Torres-Trevino, Luis M. [1 ]
Rodriguez-Linan, Angel [1 ]
机构
[1] Univ Autonoma Nuevo Leon, FIME, San Nicolas De Los Garza 66451, Nuevo Leon, Mexico
来源
2013 12TH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI 2013) | 2013年
关键词
Neural networks; on-line learning; Control by learning;
D O I
10.1109/MICAI.2013.19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A maximum sensibility neural network is implemented in an embedded system to make an online machine learning system, which is used to control the temperature of a small chamber. This is made by manually controlling the temperature to different set-points with a potentiometer, and using these values as an online training data for the neural network. Then the neural network is able to automatically adjust the temperature to any given setpoint with a good performance.
引用
收藏
页码:109 / 113
页数:5
相关论文
共 10 条
[1]   PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems [J].
Cong, S. ;
Liang, Y. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (10) :3872-3879
[2]  
Dillmann R., 1999, LEARNING ROBOT BEHAV
[3]  
Escamilla I, 2008, LECT NOTES ARTIF INT, V5317, P1009, DOI 10.1007/978-3-540-88636-5_95
[4]   A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection [J].
Ghosh-Dastidar, Samanwoy ;
Adeli, Hojjat .
NEURAL NETWORKS, 2009, 22 (10) :1419-1431
[5]  
kim J.-S., 2008, COMPUTER ENG, V3, P532
[6]  
Mitja Lustrek B. K., 2009, INFORMATICA, V33
[7]  
Nicholas R. J. B., 2010, INT J MODERN PHYS D, V19
[8]  
Rua S., 2012, 2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA 2012), P50, DOI 10.1109/STSIVA.2012.6340556
[9]  
Somer R., 2010, IEEE S SEC PRIV
[10]  
You-Bo Wang B.-Z. W., 2008, P 7 INT C MACH LEARN