Extragradient Method: O(1/K) Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity

被引:0
作者
Gorbunov, Eduard [1 ,2 ,3 ]
Loizou, Nicolas [4 ]
Gidel, Gauthier [2 ,3 ,5 ]
机构
[1] MIPT, Moscow, Russia
[2] Mila, Montreal, PQ, Canada
[3] UdeM, Montreal, PQ, Canada
[4] Johns Hopkins Univ, Baltimore, MD USA
[5] Canada CIFAR AI Chair, Toronto, ON, Canada
来源
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151 | 2022年 / 151卷
关键词
COMPLEXITY; OPERATORS; GRADIENT; SEARCH;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extragradient method (EG) (Korpelevich, 1976) is one of the most popular methods for solving saddle point and variational inequalities problems (VIP). Despite its long history and significant attention in the optimization community, there remain important open questions about convergence of EG. In this paper, we resolve one of such questions and derive the first last-iterate O(1/K) convergence rate for EG for monotone and Lipschitz VIP without any additional assumptions on the operator unlike the only known result of this type (Golowich et al., 2020b) that relies on the Lipschitzness of the Jacobian of the operator. The rate is given in terms of reducing the squared norm of the operator. Moreover, we establish several results on the (non-)cocoercivity of the update operators of EG, Optimistic Gradient Method, and Hamiltonian Gradient Method, when the original operator is monotone and Lipschitz.
引用
收藏
页码:366 / 402
页数:37
相关论文
共 61 条
  • [1] Abernethy J, 2019, Arxiv, DOI arXiv:1906.02027
  • [2] [Anonymous], 2015, STAT-US
  • [3] Interior projection-like methods for monotone variational inequalities
    Auslender, A
    Teboulle, M
    [J]. MATHEMATICAL PROGRAMMING, 2005, 104 (01) : 39 - 68
  • [4] Azizian Waiss, 2021, C LEARN THEOR, P1
  • [5] Balduzzi D, 2018, PR MACH LEARN RES, V80
  • [6] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [7] BenTal A, 2009, PRINC SER APPL MATH, P1
  • [8] Beznosikov A, 2022, Arxiv, DOI arXiv:2010.13112
  • [9] Beznosikov A, 2023, Arxiv, DOI arXiv:2106.08315
  • [10] KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES
    BORWEIN, J
    REICH, S
    SHAFRIR, I
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01): : 21 - 28