Enhanced performance of CH3NH3PbI3 perovskite solar cells by excess halide modification

被引:23
|
作者
Zhang, Jianjun [1 ,3 ]
Li, Xiaohe [3 ]
Wang, Linxi [2 ]
Yu, Jiaguo [1 ,3 ]
Wageh, S. [1 ]
Al-Ghamdi, Ahmed A. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Phys, Jeddah 21589, Saudi Arabia
[2] China Univ Geosci, Fac Mat Sci & Chem, Lab Solar Fuel, 388 Lumo Rd, Wuhan 430074, Peoples R China
[3] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
关键词
Perovskite solar cells; Halide modification; PbBr2; PbI2; Crystallization process; FILL FACTOR; PASSIVATION; FABRICATION; PRECURSORS; EFFICIENCY; STABILITY; IODIDE;
D O I
10.1016/j.apsusc.2021.150464
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal halide perovskite solar cells (PSCs) become a research hotspot owing to their remarkable power conversion efficiency, simple preparation process and low cost. The properties of perovskite films play a decisive role in the photovoltaic performance of PSCs. This work systematically investigates the effects of excess halide modification on the crystallization quality of perovskite precursors (MAPbI3) using cation halides (CsI and CH3NH3I) or lead halides (PbI2, PbBr2, PbCl2). Modification by excess cation halides leads to low coverage of the films on the substrate and agglomeration at grain boundaries. The impact of lead halides on the crystallization process depends on the types of the halogen elements. Modification by PbCl2 leads to enlarged grains and increased film roughness. In contrast, PbI2 and PbBr2 passivate defects at the grain boundaries and interfaces, improving the quality of the perovskite films. We propose crystallization mechanisms to explain the effects of modification using excess cation halides and lead halides on the quality of the crystallized perovskite films. The performance of PSCs fabricated using the modified films are tested. The PSCs with PbI2- and PbBr2-modified films exhibit optimal PCE of 16.5% and 19.3% respectively, whereas the pristine device shows an inferior PCE of 14.3%.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells
    Huang, Pao-Hsun
    Wang, Yeong-Her
    Ke, Jhong-Ciao
    Huang, Chien-Jung
    ENERGIES, 2017, 10 (05):
  • [2] Enhanced performance of CH3NH3PbI3−xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface
    Wen Wang
    Zongbao Zhang
    Yangyang Cai
    Jinshan Chen
    Jianming Wang
    Riyan Huang
    Xubing Lu
    Xingsen Gao
    Lingling Shui
    Sujuan Wu
    Jun-Ming Liu
    Nanoscale Research Letters, 2016, 11
  • [3] The efficiency limit of CH3NH3PbI3 perovskite solar cells
    Sha, Wei E. I.
    Ren, Xingang
    Chen, Luzhou
    Choy, Wallace C. H.
    APPLIED PHYSICS LETTERS, 2015, 106 (22)
  • [4] Fabrication and characterization of perovskite (CH3NH3PbI3) solar cells
    Mishra, Amrit Kumar
    Shukla, R. K.
    SN APPLIED SCIENCES, 2020, 2 (03):
  • [5] Surface Properties of CH3NH3PbI3 for Perovskite Solar Cells
    Haruyama, Jun
    Sodeyama, Keitaro
    Han, Liyuan
    Tateyama, Yoshitaka
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (03) : 554 - 561
  • [6] Theoretical Treatment of CH3NH3PbI3 Perovskite Solar Cells
    Yun, Sining
    Zhou, Xiao
    Even, Jacky
    Hagfeldt, Anders
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) : 15806 - 15817
  • [7] Fabrication and characterization of perovskite (CH3NH3PbI3) solar cells
    Amrit Kumar Mishra
    R. K. Shukla
    SN Applied Sciences, 2020, 2
  • [8] Performance data of CH3NH3PbI3 inverted planar perovskite solar cells via ammonium halide additives
    Jahandar, Muhammad
    Khan, Nasir
    Jahankhan, Muhammad
    Song, Chang Eun
    Lee, Hang Ken
    Lee, Sang Kyu
    Shin, Won Suk
    Lee, Jong-Cheol
    Im, Sang Hyuk
    Moon, Sang-Jin
    DATA IN BRIEF, 2019, 27
  • [9] Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells
    Long, Mingzhu
    Zhang, Tiankai
    Zhu, Houyu
    Li, Guixia
    Wang, Feng
    Guo, Wenyue
    Chai, Yang
    Chen, Wei
    Li, Qiang
    Wong, Kam Sing
    Xu, Jianbin
    Yan, Keyou
    NANO ENERGY, 2017, 33 : 485 - 496
  • [10] The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells
    Cheng, Yuanhang
    Li, Ho-Wa
    Qing, Jian
    Yang, Qing-Dan
    Guan, Zhiqiang
    Liu, Chen
    Cheung, Sin Hang
    So, Shu Kong
    Lee, Chun-Sing
    Tsang, Sai-Wing
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (33) : 12748 - 12755