Bivariate Tail Dependence and the Generation of Multivariate Extreme Value Distributions

被引:0
作者
Ferreira, Helena [1 ]
机构
[1] Univ Beira Interior, Dept Math, Covilha, Portugal
关键词
Multivariate extreme value theory; Tail dependence; Extremal coefficients; COPULAS;
D O I
10.1080/03610926.2012.744052
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We define, in a probabilistic way, a parametric family of multivariate extreme value distributions. We derive its copula, which is a mixture of several complete dependent copulas and total independent copulas, and the bivariate tail dependence and extremal coefficients. Based on the obtained results for these coefficients, we propose a method to build multivariate extreme value distributions with prescribed tail/extremal coefficients. We illustrate the results with examples.
引用
收藏
页码:5318 / 5325
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 2009, HDB FINANCIAL TIME S
[2]  
[Anonymous], 1997, MULTIVARIATE MODELS
[3]  
[Anonymous], 2006, An introduction to copulas
[4]  
Brommundt B., 2003, THESIS MUNICH U TECH
[5]  
Embrechts P., 2002, RISK MANAGEMENT VALU
[6]   On the generation of a multivariate extreme value distribution with prescribed tail dependence parameter matrix [J].
Falk, M .
STATISTICS & PROBABILITY LETTERS, 2005, 75 (04) :307-314
[7]   Weak convergence of empirical copula processes [J].
Fermanian, JD ;
Radulovic, D ;
Wegkamp, M .
BERNOULLI, 2004, 10 (05) :847-860
[8]  
Ferreira H., 2011, STAT PLANN INFER, V142, P1837
[9]  
Ferreira H, 2011, KYBERNETIKA, V47, P732
[10]  
Fisher M., 2012, DEPENDENCE MODELING