Mirabolic Satake equivalence and supergroups

被引:8
作者
Braverman, Alexander [1 ,2 ]
Finkelberg, Michael [2 ,3 ,4 ]
Ginzburg, Victor [5 ]
Travkin, Roman [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Skolkovo Inst Sci & Technol, Moscow, Russia
[3] Natl Res Univ Higher Sch Econ, Dept Math, Moscow 119048, Russia
[4] Inst Informat Transmiss Problems, Moscow, Russia
[5] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Satake equivalence; mirabolic affine Grassmannian; supergroups; REPRESENTATIONS; CATEGORY; DUALITY;
D O I
10.1112/S0010437X21007387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of GL(N - 1, C[[t]])-equivariant perverse sheaves on the affine Grassmannian of GLN. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
引用
收藏
页码:1724 / 1765
页数:43
相关论文
共 28 条
[1]  
Arkhipov S, 2002, INT MATH RES NOTICES, V2002, P165
[2]   Another realization of the category of modules over the small quantum group [J].
Arkhipov, S ;
Gaitsgory, D .
ADVANCES IN MATHEMATICS, 2003, 173 (01) :114-143
[3]  
BEILINSON A, QUANTIZATION HITCHIN
[4]   ON TWO GEOMETRIC REALIZATIONS OF AN AFFINE HECKE ALGEBRA [J].
Bezrukavnikov, Roman .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :1-67
[5]   EQUIVARIANT SATAKE CATEGORY AND KOSTANT-WHITTAKER REDUCTION [J].
Bezrukavnikov, Roman ;
Finkelberg, Michael .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (01) :39-72
[6]   Hyperbolic localization of intersection cohomology [J].
Braden, T .
TRANSFORMATION GROUPS, 2003, 8 (03) :209-216
[7]  
Braverman A., 2018, ARXIV180910774
[8]  
Cogdell J. W., 2004, Fields Inst. Monogr., V20, P1
[9]   ON A THEOREM OF BRADEN [J].
Drinfeld, V. ;
Gaitsgory, D. .
TRANSFORMATION GROUPS, 2014, 19 (02) :313-358
[10]   KOSTKA-SHOJI POLYNOMIALS AND LUSZTIG'S CONVOLUTION DIAGRAM [J].
Finkelberg, Michael ;
Ionov, Andrei .
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (01) :31-42