Balancing Aging Mechanisms in Organic Field-Effect Transistors

被引:0
作者
Jia, Xiaojia [1 ]
Fuentes-Hernandez, Canek [1 ]
Wang, Cheng-Yin [1 ]
Park, Youngrak [1 ]
Kim, G. [1 ]
Kippelen, Bernard [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, COPE, Atlanta, GA 30332 USA
来源
ORGANIC AND HYBRID FIELD-EFFECT TRANSISTORS XVIII | 2019年 / 11097卷
关键词
Organic electronic; field-effect transistor; bilayer gate dielectric; nanolaminate; stability; ENVIRONMENTAL STABILITY;
D O I
10.1117/12.2528071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We developed a simple method to improve the stability of organic field-effect transistors (OFETs) with bilayer gate dielectrics. The bilayer gate dielectric comprises an amorphous fluoropolymer (CYTOP) layer and an Al2O3-HfO2 nanolaminate (NL) grown by the atomic layer deposition (ALD) technique. In the OFETs with bilayer gate dielectrics, two aging mechanisms exist, and they cause the shifts of threshold voltage in opposite directions during long-term operation. By engineering the bilayer gate dielectric, the effects of these two mechanisms can compensate, leading to devices with remarkable operational stability that is comparable or superior to that of commercial inorganic counterparts. The NL grown by ALD shows excellent encapsulation property and improves the environmental stability of the OFETs. The devices are tested by exposing the devices to high temperature and high moisture conditions (i.e., the standard 85/85 condition, meaning 85 degrees C and 85% relative humidity). The results of OFETs with CYTOP/NL bilayer gate dielectrics are presented and compared to those OFETs with Al2O3 gate dielectrics
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Functionalized polymer dielectrics for low-operating voltage organic field-effect transistors
    John Barron
    Jaewon Lee
    Suchismita Guha
    Journal of Materials Research, 2022, 37 : 1547 - 1557
  • [42] Complementary Circuits with WSe2/Organic Semiconductor Heterostructure Field-Effect Transistors
    Wang, Zi Cheng
    Yoon, Chankeun
    Zhou, Yuchen
    Dodabalapur, Ananth
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (04) : 6480 - 6487
  • [43] Polymer Electret Improves the Performance of the Oxygen-Doped Organic Field-Effect Transistors
    Li, Dongfan
    Zhu, Yuanwei
    Wei, Peng
    Lu, Wanlong
    Li, Shengtao
    Wang, Steven
    Xu, Ben Bin
    Lu, Guanghao
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (11) : 1665 - 1668
  • [44] Conjugated polymers for functional applications: lifetime and performance of polymeric organic semiconductors in organic field-effect transistors
    Kimpel, Joost
    Michinobu, Tsuyoshi
    POLYMER INTERNATIONAL, 2021, 70 (04) : 367 - 373
  • [45] On the intrinsic limits of pentacene field-effect transistors
    Schoen, J. H.
    Kloc, Ch.
    Batlogg, B.
    ORGANIC ELECTRONICS, 2000, 1 (01) : 57 - 64
  • [46] Ultrathin CdSe nanowire field-effect transistors
    Anubhav Khandelwal
    Debdeep Jena
    James W. Grebinski
    Katherine Leigh Hull
    Masaru K. Kuno
    Journal of Electronic Materials, 2006, 35 : 170 - 172
  • [47] Microwave performance of diamond field-effect transistors
    Taniuchi, H
    Umezawa, H
    Ishizaka, H
    Kawarada, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2002, 41 (4B): : 2591 - 2594
  • [48] Ultrathin CdSe nanowire field-effect transistors
    Khandelwal, A
    Jena, D
    Grebinski, JW
    Hull, KL
    Kuno, MK
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (01) : 170 - 172
  • [49] Organic Field-Effect Transistors with a Bilayer Gate Dielectric Comprising an Oxide Nanolaminate Grown by Atomic Layer Deposition
    Wang, Cheng-Yin
    Fuentes-Hernandez, Canek
    Yun, Minseong
    Singh, Ankit
    Dindar, Amir
    Choi, Sangmoo
    Graham, Samuel
    Kippelen, Bernard
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (44) : 29872 - 29876
  • [50] Mobility overestimation due to minority carrier injection and trapping in organic field-effect transistors
    Okachi, Takayuki
    ORGANIC ELECTRONICS, 2018, 57 : 34 - 44