Balancing Aging Mechanisms in Organic Field-Effect Transistors

被引:0
作者
Jia, Xiaojia [1 ]
Fuentes-Hernandez, Canek [1 ]
Wang, Cheng-Yin [1 ]
Park, Youngrak [1 ]
Kim, G. [1 ]
Kippelen, Bernard [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, COPE, Atlanta, GA 30332 USA
来源
ORGANIC AND HYBRID FIELD-EFFECT TRANSISTORS XVIII | 2019年 / 11097卷
关键词
Organic electronic; field-effect transistor; bilayer gate dielectric; nanolaminate; stability; ENVIRONMENTAL STABILITY;
D O I
10.1117/12.2528071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We developed a simple method to improve the stability of organic field-effect transistors (OFETs) with bilayer gate dielectrics. The bilayer gate dielectric comprises an amorphous fluoropolymer (CYTOP) layer and an Al2O3-HfO2 nanolaminate (NL) grown by the atomic layer deposition (ALD) technique. In the OFETs with bilayer gate dielectrics, two aging mechanisms exist, and they cause the shifts of threshold voltage in opposite directions during long-term operation. By engineering the bilayer gate dielectric, the effects of these two mechanisms can compensate, leading to devices with remarkable operational stability that is comparable or superior to that of commercial inorganic counterparts. The NL grown by ALD shows excellent encapsulation property and improves the environmental stability of the OFETs. The devices are tested by exposing the devices to high temperature and high moisture conditions (i.e., the standard 85/85 condition, meaning 85 degrees C and 85% relative humidity). The results of OFETs with CYTOP/NL bilayer gate dielectrics are presented and compared to those OFETs with Al2O3 gate dielectrics
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-k polymeric gate insulators for organic field-effect transistors
    Yu, Haiyang
    Chen, Yihang
    Wei, Huanhuan
    Gong, Jiangdong
    Xu, Wentao
    NANOTECHNOLOGY, 2019, 30 (20)
  • [32] Gate-bias assisted charge injection in organic field-effect transistors
    Brondijk, J. J.
    Torricelli, F.
    Smits, E. C. P.
    Blom, P. W. M.
    de Leeuw, D. M.
    ORGANIC ELECTRONICS, 2012, 13 (09) : 1526 - 1531
  • [33] New π-extended triphenylene-based organic semiconductors in field-effect transistors
    Mai Ha Hoang
    Duc Nghia Nguyen
    Trinh Tung Ngo
    Cho, Min Ju
    Lee, Suk Joong
    Choi, Dong Hoon
    SYNTHETIC METALS, 2015, 209 : 434 - 440
  • [34] Active layer self-protection process for organic field-effect transistors
    刘舸
    刘明
    商立伟
    涂德钰
    刘兴华
    王宏
    柳江
    半导体学报, 2009, 30 (09) : 45 - 48
  • [35] Biosensor Application of CMOS Inverter and Ring Oscillator with Organic Field-Effect Transistors
    Utsumi, Masaki
    Fujiwara, Akihiko
    Goto, Hidenori
    Okamoto, Hideki
    Takeyasu, Nobuyuki
    Saitoh, Yasunori
    Suga, Michihiro
    Takahashi, Yuichiro
    Imanaka, Hiroyuki
    Taniguchi, Hiroki
    Yasui, Shintaro
    Eguchi, Ritsuko
    Kubozono, Yoshihiro
    ACS APPLIED ELECTRONIC MATERIALS, 2025, 7 (04) : 1483 - 1492
  • [36] Recent progress on metal halide perovskite field-effect transistors
    Zhu, Huihui
    Liu, Ao
    Noh, Yong-Young
    JOURNAL OF INFORMATION DISPLAY, 2021, 22 (04) : 257 - 268
  • [37] Field-Effect Transistors Based on PPV Derivatives as a Semiconducting Layer
    Lee, Woo-Hyung
    Kong, Hoyoul
    Oh, Se-Young
    Shim, Hong-Ku
    Kang, In-Nam
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2009, 47 (01) : 111 - 120
  • [38] Effect of UV/ozone treatment on polystyrene dielectric and its application on organic field-effect transistors
    Huang, Wei
    Fan, Huidong
    Zhuang, Xinming
    Yu, Junsheng
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [39] Graphene field-effect transistors: the road to bioelectronics
    Donnelly, Matthew
    Mao, Dacheng
    Park, Junsu
    Xu, Guangyu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (49)
  • [40] SrTiO3 insulator for low-voltage organic field-effect transistors
    Yan, Hu
    Okuzaki, Hidenori
    SYNTHETIC METALS, 2011, 161 (17-18) : 1781 - 1786