Balancing Aging Mechanisms in Organic Field-Effect Transistors

被引:0
作者
Jia, Xiaojia [1 ]
Fuentes-Hernandez, Canek [1 ]
Wang, Cheng-Yin [1 ]
Park, Youngrak [1 ]
Kim, G. [1 ]
Kippelen, Bernard [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, COPE, Atlanta, GA 30332 USA
来源
ORGANIC AND HYBRID FIELD-EFFECT TRANSISTORS XVIII | 2019年 / 11097卷
关键词
Organic electronic; field-effect transistor; bilayer gate dielectric; nanolaminate; stability; ENVIRONMENTAL STABILITY;
D O I
10.1117/12.2528071
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We developed a simple method to improve the stability of organic field-effect transistors (OFETs) with bilayer gate dielectrics. The bilayer gate dielectric comprises an amorphous fluoropolymer (CYTOP) layer and an Al2O3-HfO2 nanolaminate (NL) grown by the atomic layer deposition (ALD) technique. In the OFETs with bilayer gate dielectrics, two aging mechanisms exist, and they cause the shifts of threshold voltage in opposite directions during long-term operation. By engineering the bilayer gate dielectric, the effects of these two mechanisms can compensate, leading to devices with remarkable operational stability that is comparable or superior to that of commercial inorganic counterparts. The NL grown by ALD shows excellent encapsulation property and improves the environmental stability of the OFETs. The devices are tested by exposing the devices to high temperature and high moisture conditions (i.e., the standard 85/85 condition, meaning 85 degrees C and 85% relative humidity). The results of OFETs with CYTOP/NL bilayer gate dielectrics are presented and compared to those OFETs with Al2O3 gate dielectrics
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Organic field-effect transistors
    Malachowski, M. J.
    Zmija, J.
    OPTO-ELECTRONICS REVIEW, 2010, 18 (02) : 121 - 136
  • [2] Organic Field-Effect Transistors for CMOS Devices
    Melzer, Christian
    von Seggern, Heinz
    ORGANIC ELECTRONICS, 2010, 223 : 213 - 257
  • [3] Ambient instability of organic field-effect transistors and their improvement strategies
    Chen, Yanyan
    Deng, Wei
    Zhang, Xiujuan
    Wang, Mingxiang
    Jie, Jiansheng
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (05)
  • [4] Photo -induced and electrical degradation of organic field-effect transistors
    Cielecki, Pawel Piotr
    Leissner, Till
    Ahmadpour, Mehrad
    Madsen, Morten
    Rubahn, Horst-Gunter
    Fiutowski, Jacek
    Kjelstrup-Hansen, Jakob
    ORGANIC ELECTRONICS, 2020, 82
  • [5] Bias stress effect in polyelectrolyte-gated organic field-effect transistors
    Sinno, H.
    Fabiano, S.
    Crispin, X.
    Berggren, M.
    Engquist, I.
    APPLIED PHYSICS LETTERS, 2013, 102 (11)
  • [6] Bias Stress Effect in "Air-Gap" Organic Field-Effect Transistors
    Chen, Y.
    Podzorov, V.
    ADVANCED MATERIALS, 2012, 24 (20) : 2679 - 2684
  • [7] Parylene C as a versatile dielectric material for organic field-effect transistors
    Marszalek, Tomasz
    Gazicki-Lipman, Maciej
    Ulanski, Jacek
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 1532 - 1545
  • [8] Photolithographic processing and its influence on the performance of organic field-effect transistors
    Schmoltner, K.
    Klug, A.
    Kofler, J.
    List, E. J. W.
    ORGANIC SEMICONDUCTORS IN SENSORS AND BIOELECTRONICS V, 2012, 8479
  • [9] Organic field-effect transistors using copper phthalocyanine thin film
    Xiao, K
    Liu, YQ
    Yu, G
    Zhu, DB
    SYNTHETIC METALS, 2003, 137 (1-3) : 991 - 992
  • [10] Modulated Thermoelectric Properties of Organic Semiconductors Using Field-Effect Transistors
    Zhang, Fengjiao
    Zang, Yaping
    Huang, Dazhen
    Di, Chong-an
    Gao, Xike
    Sirringhaus, Henning
    Zhu, Daoben
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (20) : 3004 - 3012