A One-Dimensional Physically Universal Cellular Automaton

被引:6
|
作者
Salo, Ville [1 ]
Torma, Ilkka [1 ]
机构
[1] Univ Turku, Dept Matemat & Stat, Turku, Finland
来源
UNVEILING DYNAMICS AND COMPLEXITY, CIE 2017 | 2017年 / 10307卷
基金
芬兰科学院;
关键词
Cellular automaton; Physical universality; Reversibility;
D O I
10.1007/978-3-319-58741-7_35
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Physical universality of a cellular automaton was defined by Janzing in 2010 as the ability to implement an arbitrary transformation of spatial patterns. In 2014, Schaeffer gave a construction of a two-dimensional physically universal cellular automaton. We construct a one-dimensional version of the automaton and a reversibly universal automaton.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 50 条
  • [21] Achieving Universal Computations on One-Dimensional Cellular Automata
    Yunes, Jean-Baptiste
    CELLULAR AUTOMATA, 2010, 6350 : 660 - 669
  • [22] Grids and universal computations on one-dimensional cellular automata
    Yunes, Jean-Baptiste
    NATURAL COMPUTING, 2012, 11 (02) : 303 - 309
  • [23] Simple universal one-dimensional reversible cellular automata
    Morita, Kenichi
    JOURNAL OF CELLULAR AUTOMATA, 2007, 2 (02) : 159 - 165
  • [24] Grids and universal computations on one-dimensional cellular automata
    Jean-Baptiste Yunès
    Natural Computing, 2012, 11 : 303 - 309
  • [25] Bi-SOC-states in one-dimensional random cellular automaton
    Czechowski, Zbigniew
    Budek, Agnieszka
    Bialecki, Mariusz
    CHAOS, 2017, 27 (10)
  • [26] One-dimensional sensitive driving cellular automaton model for traffic flow
    Li, L
    Yu, X
    Dai, SQ
    ACTA PHYSICA SINICA, 2003, 52 (09) : 2121 - 2126
  • [27] CLUSTERING IN THE ONE-DIMENSIONAL 3-COLOR CYCLIC CELLULAR AUTOMATON
    FISCH, R
    ANNALS OF PROBABILITY, 1992, 20 (03): : 1528 - 1548
  • [28] Replication of a Binary Image on a One-Dimensional Cellular Automaton with Linear Rules
    Rao, U. Srinivasa
    Jeganathan, L.
    COMPLEX SYSTEMS, 2018, 27 (04): : 415 - 430
  • [29] Simulation of crystallographic changes during recrystallization by one-dimensional cellular automaton
    Bubonyi, T.
    Barkoczy, P.
    11TH HUNGARIAN CONFERENCE ON MATERIALS SCIENCE, 2018, 426
  • [30] A non-qubit quantum adder as one-dimensional cellular automaton
    Wu, C. H.
    Cain, C. A.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 59 : 243 - 247