Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mossbauer spectroscopy and in situ QXAS

被引:33
|
作者
De Coster, Valentijn [1 ]
Srinath, Nadadur Veeraraghavan [1 ]
Theofanidis, Stavros Alexandros [2 ,4 ]
Pirro, Laura [1 ]
Van Alboom, Antoine [3 ]
Poelman, Hilde [1 ]
Sabbe, Maarten K. [1 ]
Marin, Guy B. [1 ]
Galvita, Vladimir V. [1 ]
机构
[1] Univ Ghent, Lab Chem Technol, Technol Pk 125, B-9052 Ghent, Belgium
[2] Aristotle Univ Thessaloniki, Chem Engn Dept, Lab Petrochem Technol, Thessaloniki 54124, Greece
[3] Univ Ghent, Dept Appl Phys, Valentin Vaerwyckweg 1, B-9000 Ghent, Belgium
[4] Aristotle Univ Thessaloniki, Dept Chem Engn, Univ Campus, Thessaloniki 54124, Greece
关键词
Ni-Fe alloy; X-ray absorption spectroscopy; MCR-ALS; CO2; re-oxidation; METAL-SUPPORT INTERACTION; LOOPING PARTIAL OXIDATION; PRE-EDGE FEATURES; FE-NI; NI/MGAL2O4; CATALYST; CO2; CONVERSION; NICKEL; STEAM; STABILITY; MGAL2O4;
D O I
10.1016/j.apcatb.2021.120720
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The evolution of the constituents of an 8 wt%Ni-5 wt%Fe/MgAl2O4 catalyst for dry reforming of methane (DRM) is monitored by in situ quick X-ray absorption spectroscopy (QXAS) and Fe-57 Mossbauer spectroscopy. In as prepared state, Fe is present as NiFe2O4 at the surface and as MgFex3+Al2-xO4 within the support, whereas Ni is mainly present as NiO. During H-2-TPR, NiFe2O4 and NiO form an alloy from 500 degrees C on and (MgFex+Al2-xO4)-Al-3 is partially reduced to MgFex2+Al2-xO4, such that Ni-Fe alloy, MgFex2+Al2-xO4 and MgFex3+Al2-xO4 are the prevalent phases in the reduced catalyst. During DRM, dominantly oxidizing environments (CH4/CO2 = 1/2, 1/1.5) lead to formation of FeOx nanoparticles at the surface of the Ni-Fe alloy, thereby affecting the DRM activity, and possibly to some reincorporation of Fe into the support. For CH4/CO2 = 1/1, no significant changes occur in the catalyst's activated state, as a consequence of reduction by CH4 dissociation species counteracting oxidation by CO2. However, Mossbauer analysis detects continued extraction of Fe from the support, sustaining ongoing NiFe alloying.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Exceptional stability of spinel Ni-MgAl 2 O 4 catalyst with ordered mesoporous structure for dry reforming of methane
    Wen, Fuli
    Xu, Cheng
    Huang, Nangui
    Wang, Tianye
    Sun, Xia
    Li, Hongwei
    Zhang, Rongjun
    Xia, Guofu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 69 : 1481 - 1491
  • [22] Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/ MgAl2O4 as a Bifunctional Catalyst
    Tarifa, Pilar
    Reina, Tomas Ramirez
    Gonzalez-Castano, Miriam
    Arellano-Garcia, Harvey
    ENERGY & FUELS, 2022, 36 (15) : 8267 - 8273
  • [23] Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane
    Horvath, A.
    Guczi, L.
    Kocsonya, A.
    Safran, G.
    La Parola, V.
    Liotta, L. F.
    Pantaleo, G.
    Venezia, A. M.
    APPLIED CATALYSIS A-GENERAL, 2013, 468 : 250 - 259
  • [24] Ni-based catalysts supported on MgAl2O4 with different properties for combined steam and CO2 reforming of methane
    Yu, Shiyi
    Hu, Yuanwu
    Cui, Hongjie
    Cheng, Zhenmin
    Zhou, Zhiming
    CHEMICAL ENGINEERING SCIENCE, 2021, 232
  • [25] B-Ni/MgAl2O4 catalyzed dry reforming of methane: The role of boron to resist the formation of graphitic carbon
    Shakir, Md
    Sengupta, Siddhartha
    Sinhamahapatra, Apurba
    Liu, Shaomin
    Vuthaluru, Hari
    FUEL, 2022, 320
  • [26] Effect of calcination temperature on stability and activity of Ni/MgAl2O4 catalyst for steam reforming of methane at high pressure condition
    Katheria, Sanjay
    Gupta, Abhishek
    Deo, Goutam
    Kunzru, Deepak
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (32) : 14123 - 14132
  • [27] NaBH4-Assisted Synthesis of B-(Ni-Co)/MgAl2O4 Nanostructures for the Catalytic Dry Reforming of Methane
    Shakir, Md
    Prasad, Manohar
    Ray, Koustuv
    Sengupta, Siddhartha
    Sinhamahapatra, Apurba
    Liu, Shaomin
    Vuthaluru, Hari Babu
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 10951 - 10961
  • [28] Steam reforming of ethanol over Ni/MgAl2O4 catalysts
    Di Michele, Alessandro
    Dell'Angelo, Anna
    Tripodi, Antonio
    Bahadori, Elnaz
    Sanchez, Felipe
    Motta, Davide
    Dimitratos, Nikolaos
    Rossetti, Ilenia
    Ramis, Gianguido
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (02) : 952 - 964
  • [29] Fe2O3-MgAl2O4 for CO Production from CO2: Mossbauer Spectroscopy and in Situ X-ray Diffraction
    Buelens, Lukas C.
    Van Alboom, Antoon
    Poelman, Hilde
    Detavernier, Christophe
    Marin, Guy B.
    Galvita, Vladimir V.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) : 9553 - 9565
  • [30] High coke-resistance MgAl2O4 islands decorated catalyst with minimizing sintering in carbon dioxide reforming of methane
    Son, In Hyuk
    Kwon, Soonchul
    Park, Jong Hwan
    Lee, Seung Jae
    NANO ENERGY, 2016, 19 : 58 - 67