Enabling lithium metal battery with flexible polymer/garnet type solid oxide composite electrolyte

被引:17
作者
Gu, Yuting [1 ]
She, Shengxian [1 ]
Hong, Zijian [1 ,2 ]
Huang, Yuhui [1 ]
Wu, Yongjun [1 ,2 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Lab Dielect Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Cyrus Tang Ctr Sensor Mat & Applicat, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Lithium metal battery; Solid electrolyte; Polymer/garnet composite; HIGH-PERFORMANCE; HYBRID ELECTROLYTES; IONIC TRANSPORT; RECENT PROGRESS; LI7LA3ZR2O12; CHALLENGES; INTERFACE; CONDUCTIVITY; CONDUCTORS; DESIGN;
D O I
10.1016/j.ssi.2021.115710
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer/garnet solid oxide composite electrolyte has been regarded as a promising solution for solid-state lithium metal battery. It has many advantages such as higher flexibility, lower density, relatively higher ionic conductivity and better contact with electrodes as compared to pure oxide electrolytes and pure polymer electrolytes. In this work, we report a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) / Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite electrolyte with a facile synthesis route and all commercially available raw materials. This hybrid electrolyte exhibits overall outstanding properties, including wide electrochemical stability window (similar to 5 V), superior mechanical properties with tensile strength over 13 MPa and Young's Modulus >50 MPa, relatively good room temperature ionic conductivity (3.2 x 10(-4) S.cm(-1)) and good electrochemical performance (similar to 150 mAh g(-1) at 0.1C and 99% coulombic efficiency after 50 cycles).
引用
收藏
页数:8
相关论文
共 77 条
[21]   PVDF-HFP/LiF Composite Interfacial Film to Enhance the Stability of Li-Metal Anodes [J].
Guo, Suogang ;
Piao, Nan ;
Wang, Li ;
Xu, Hong ;
Tian, Guangyu ;
Li, Jiangang ;
He, Xiangming .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (07) :7191-7199
[22]   Controlling Ionic Transport through the PEO-LiTFSI/LLZTO Interface [J].
Gupta, Arushi ;
Sakamoto, Jeff .
ELECTROCHEMICAL SOCIETY INTERFACE, 2019, 28 (02) :63-69
[23]   Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D [J].
He, Yanghua ;
Matthews, Bryan ;
Wang, Jingyun ;
Song, Li ;
Wang, Xiaoxia ;
Wu, Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) :735-753
[24]   Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies [J].
Hu, Yuhai ;
Sun, Xueliang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10712-10738
[25]   Lithium ion conduction in polymer electrolytes based on PAN [J].
Huang, BY ;
Wang, ZX ;
Li, GB ;
Huang, H ;
Xue, RJ ;
Chen, LQ ;
Wang, FS .
SOLID STATE IONICS, 1996, 85 (1-4) :79-84
[26]   Manipulating Li2O atmosphere for sintering dense Li7La3Zr2O12 solid electrolyte [J].
Huang, Xiao ;
Lu, Yang ;
Song, Zhen ;
Rui, Kun ;
Wang, Qingsong ;
Xiu, Tongping ;
Badding, Michael E. ;
Wen, Zhaoyin .
ENERGY STORAGE MATERIALS, 2019, 22 :207-217
[27]   High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries [J].
Huang, Xueyan ;
Zeng, Songshan ;
Liu, Jingjing ;
He, Ting ;
Sun, Luyi ;
Xu, Donghui ;
Yu, Xiaoyuan ;
Luo, Ying ;
Zhou, Wuyi ;
Wu, Jianfeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (50) :27882-27891
[28]   Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors A Review [J].
Huggins, R. A. .
IONICS, 2002, 8 (3-4) :300-313
[29]   Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes [J].
Jacob, MME ;
Prabaharan, SRS ;
Radhakrishna, S .
SOLID STATE IONICS, 1997, 104 (3-4) :267-276
[30]  
Janek J, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.141, 10.1038/NENERGY.2016.141]