Positive Solutions for Asymptotically Linear Cone-Degenerate Elliptic Equations

被引:0
作者
Chen, Hua [1 ]
Luo, Peng [2 ]
Tian, Shuying [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotically linear; Pohozaev identity; Cone degenerate elliptic operators; EXISTENCE; PRINCIPLE;
D O I
10.1007/s11401-022-0353-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors study the asymptotically linear elliptic equation on manifold with conical singularities -Delta(B)u + lambda u = a(z)f(u), u >= 0 in R-+(N), where N = n + 1 >= 3, lambda > 0, z = (t, x(1), ..., x(n)), and Delta(B) = (t partial derivative(t))(2) + partial derivative(2)(x1) + ... + partial derivative(2)(xn). Combining properties of cone-degenerate operator, the Pohozaev manifold and qualitative properties of the ground state solution for the limit equation, we obtain a positive solution under some suitable conditions on a and f.
引用
收藏
页码:685 / 718
页数:34
相关论文
共 25 条