Solar Spectrum Rectification Using Nano-Antennas and Tunneling Diodes

被引:30
作者
Dagenais, Mario [1 ]
Choi, Kwangsik [1 ]
Yesilkoy, Filiz [1 ]
Chryssis, Athanasios N. [1 ]
Peckerar, Martin C. [1 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
来源
OPTOELECTRONIC INTEGRATED CIRCUITS XII | 2010年 / 7605卷
关键词
MIM diode; tunneling diode; asymmetric tunneling diode; surface plasmon; surface plasmon resonance; OXIDE-METAL DIODES; FILM; FREQUENCIES; ELECTRODES; DC;
D O I
10.1117/12.845931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Our goal is to develop a rectifying antenna (rectenna) applicable to solar spectrum energy harvesting. In particular, we aim to demonstrate viable techniques for converting portion of the solar spectrum not efficiently converted to electric power by current photovoltaic approaches. Novel design guidelines are suggested for rectifying antenna coupled tunneling diodes. We propose a new geometric field enhancement scheme in antenna coupled tunneling diodes that uses surface plasmon resonances. For this purpose, we have successfully implemented a planar tunneling diode with polysilion/SiO(2)/polysilcon structure. An antenna coupled asymmetric tunneling diode is developed with a pointed triangle electrode for geometric field enhancement. The geometrically asymmetric tunneling diode shows a unique asymmetric tunneling current versus voltage characteristic. Through comparison with crossover tunneling diodes, we verified that the current asymmetry is not from the work function difference between the two electrodes. Results of RF rectification tests using the asymmetric diode demonstrate that our approach is practical for energy harvesting application. Furthermore, we describe how surface plasmons can enhance the electric field across the tunnel junction, lowering the effective "turn-on" voltage of the diode, further improving rectification efficiency.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Near-field excitation of nanoantenna resonance [J].
Bakker, Reuben M. ;
Boltasseva, Alexandra ;
Liu, Zhengtong ;
Pedersen, Rasmus H. ;
Gresillon, Samuel ;
Kildishev, Alexander V. ;
Drachev, Vladimir P. ;
Shalaev, Vladimir M. .
OPTICS EXPRESS, 2007, 15 (21) :13682-13688
[2]   Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes [J].
Bean, Jeffrey A. ;
Tiwari, Badri ;
Bernstein, Gary H. ;
Fay, P. ;
Porod, Wolfgang .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (01) :11-14
[3]   BOILING WATER OXIDATION RATES ON SILICON [J].
BECK, JW .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (07) :2391-&
[4]  
Berland B., 2003, PHOTOVOLTAIC TECHNOL
[5]  
BLAKE GM, 2003, METAL OXIDE ELECT TU
[6]  
CHOI K, 2009, FABRICATION THIN FIL
[7]   Optical antennas: Resonators for local field enhancement [J].
Crozier, KB ;
Sundaramurthy, A ;
Kino, GS ;
Quate, CF .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (07) :4632-4642
[8]  
Dees J.W., 1966, MICROWAVE J, V9, P48
[9]   DETECTION OF OPTICAL AND INFRARED RADIATION WITH DC-BIASED ELECTRON-TUNNELING METAL-BARRIER-METAL DIODES [J].
FARIS, SM ;
GUSTAFSON, TK ;
WIESNER, JC .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1973, QE 9 (07) :737-745
[10]   Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz [J].
Fumeaux, C ;
Herrmann, W ;
Kneubuhl, FK ;
Rothuizen, H ;
Lipphardt, B ;
Weiss, CO .
APPLIED PHYSICS B-LASERS AND OPTICS, 1998, 66 (03) :327-332