Some new algorithms for solving mixed equilibrium problems

被引:12
作者
Yao, Yonghong [1 ]
Noor, Muhammad Aslam [2 ,3 ]
Liou, Yeong-Cheng [4 ]
Kang, Shin Min [5 ,6 ]
机构
[1] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[4] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
[5] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[6] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
关键词
Mixed equilibrium problem; Projection methods; Variational inequality; Hilbert spaces; FIXED-POINT PROBLEMS; STRONG-CONVERGENCE THEOREM; NONEXPANSIVE-MAPPINGS; EXTRAGRADIENT METHOD; VARIATIONAL-INEQUALITIES; ITERATIVE METHOD;
D O I
10.1016/j.camwa.2010.06.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest and analyze two projection methods (one implicit and one explicit) for finding a particular solution of a mixed equilibrium problem in a real Hilbert space. Furthermore, we prove that the proposed projection methods converge strongly to a particular solution of the mixed equilibrium problem. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1351 / 1359
页数:9
相关论文
共 31 条
[1]  
[Anonymous], APPL MATH E NOTES
[2]  
Blum E., 1994, Math. Stud., V63, P127
[3]   An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings [J].
Ceng, L. -C. ;
Al-Homidan, S. ;
Ansari, Q. H. ;
Yao, J. -C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :967-974
[4]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[5]   Parametric well-posedness for variational inequalities defined by bifunctions [J].
Fang, Ya-Ping ;
Hu, Rong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (08) :1306-1316
[6]  
Glowinski R., 1981, Numerical Analysis of Variational Inequalities
[7]  
Moudafi A, 1999, LECT NOTES ECON MATH, V477, P187
[8]  
Moudafi A, 2008, J NONLINEAR CONVEX A, V9, P37
[9]   Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings [J].
Nadezhkina, N ;
Takahashi, W .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 128 (01) :191-201
[10]  
Noor M.A., 1988, Appl. Math. Lett., V1, P119, DOI [10.1016/0893-9659(88)90054-7, DOI 10.1016/0893-9659(88)90054-7]