Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing

被引:24
|
作者
Wang, Da [1 ,2 ]
Li, Fu-Li [1 ]
Wang, Shi-An [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Shandong Prov Key Lab Synthet Biol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
来源
BIOTECHNOLOGY FOR BIOFUELS | 2016年 / 9卷
关键词
Yeast; Inulin; Ethanol; Ploidy; Consolidated bioprocessing; Protein secretion; JERUSALEM-ARTICHOKE TUBERS; KLUYVEROMYCES-MARXIANUS; BIOETHANOL PRODUCTION; TRANSCRIPTIONAL ANALYSIS; CELLULOSIC ETHANOL; YEAST; FERMENTATION; POPULATION; GENE; EXPRESSION;
D O I
10.1186/s13068-016-0511-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo-and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. Results: Results from co-expressing endo-and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late stationary phase. Comparison between haploid and diploid engineered strains indicated that diploid strains were superior to haploid strains in ethanol production albeit not in production and secretion of inulinases. Ethanol fermentation from both inulin and Jerusalem artichoke tuber powder was dramatically improved in most engineered strains. Ethanol yield achieved in the ultimate diploid strain JZD-InuMKCP was close to the theoretical maximum. Productivity achieved in the strain JZD-InuMKCP reached to 2.44 and 3.13 g/L/h in fermentation from 200 g/L inulin and 250 g/L raw Jerusalem artichoke tuber powder, respectively. To our knowledge, these are the highest productivities reported up to now in ethanol fermentation from inulin resources. Conclusions: Although model S. cerevisiae strains are preferentially used as hosts in bioengineering, some natural strains do have specific excellent properties. This study successfully engineered a natural S. cerevisiae strain for efficient ethanol production from inulin resources by consolidated bioprocess, which indicated the feasibility of natural strains used as bioengineering hosts. This study also presented different properties in enzyme secretion and ethanol fermentation between haploid and diploid engineering strains. These findings provided guidelines for host selection in bioengineering.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis
    Demiray, Ekin
    Karatay, Sergi Ertugrul
    Donmez, Gonul
    ENERGY, 2018, 159 : 988 - 994
  • [42] Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae
    Xu, Lili
    Shen, Yu
    Hou, Jin
    Peng, Bingyin
    Tang, Hongting
    Bao, Xiaoming
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2014, 117 (01) : 45 - 52
  • [43] Ethanol production from Agave salmiana leaf juices by consolidated bioprocessing comparing two strains of Kluyveromyces marxianus
    Hernandez-Mendoza, Alonso G.
    Ruiz, Hector A.
    Ortiz-Ceballos, Angel I.
    Castro-Luna, Alejandro A.
    Lainez, Magdiel
    Martinez-Hernandez, Sergio
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 208
  • [44] Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production
    Park, Jeong-Hoon
    Kim, Sang-Hyoun
    Park, Hee-Deung
    Kim, Jun Seok
    Yoon, Jeong-Jun
    RENEWABLE ENERGY, 2014, 65 : 213 - 218
  • [45] Engineering Saccharomyces cerevisiae for application in integrated bioprocessing biorefineries
    Minnaar, Letitia S.
    Kruger, Francois
    Fortuin, Jordan
    Hoffmeester, Lazzlo J.
    den Haan, Riaan
    CURRENT OPINION IN BIOTECHNOLOGY, 2024, 85
  • [46] Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain
    Varize, Camila S.
    Bucker, Augusto
    Lopes, Lucas D.
    Christofoleti-Furlan, Renata M.
    Raposo, Mariane S.
    Basso, Luiz C.
    Stambuk, Boris U.
    FERMENTATION-BASEL, 2022, 8 (10):
  • [47] De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae
    Li, Mingji
    Kildegaard, Kanchana R.
    Chen, Yun
    Rodriguez, Angelica
    Borodina, Irina
    Nielsen, Jens
    METABOLIC ENGINEERING, 2015, 32 : 1 - 11
  • [48] Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display
    Khatun, M. Mahfuza
    Liu, Chen-Guang
    Zhao, Xin-Qing
    Yuan, Wen-Jie
    Bai, Feng-Wu
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2017, 44 (02) : 295 - 301
  • [49] Development of high yielding ethanol resistant strain of Saccharomyces cerevisiae for ethanol production
    Chakraborti, Modhurima
    Saha, Pallab
    Banik, Ajit Kumar
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2012, 89 (03) : 411 - 415
  • [50] Engineering of Saccharomyces cerevisiae for the production of (+)-ambrein
    Moser, Sandra
    Leitner, Erich
    Plocek, Thomas J.
    Vanhessche, Koenraad
    Pichler, Harald
    YEAST, 2020, 37 (01) : 163 - 172