Automorphism Groups of Symmetric and Pseudo-real Riemann Surfaces

被引:1
|
作者
Tyszkowska, Ewa [1 ]
机构
[1] Gdansk Univ, Inst Math, Wita Stwosza 57, PL-80952 Gdansk, Poland
关键词
Riemann surface; Symmetry of a Riemann surface; Asymmetric Riemann surface; Pseudo-symmetric Riemann surface; Fuchsian groups; NEC groups;
D O I
10.1007/s00009-021-01825-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The category of smooth, irreducible, projective, complex algebraic curves is equivalent to the category of compact Riemann surfaces. We study automorphism groups of Riemann surfaces which are equivalent to complex algebraic curves with real moduli. A complex algebraic curve C has real moduli when the corresponding surface X-C admits an anti-conformal automorphism. If no such an automorphism is an involution (symmetry), then the surface X-C is called pseudo-real and the curve C is isomorphic to its conjugate, but is not definable over reals. Otherwise, the surface X-C is called symmetric and the curve C is real.
引用
收藏
页数:22
相关论文
共 42 条
  • [31] ON THE CONNECTEDNESS OF THE LOCUS OF REAL ELLIPTIC-HYPERELLIPTIC RIEMANN SURFACES
    Bujalance, Jose A.
    Costa, Antonio F.
    Porto, Ana M.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (08) : 1069 - 1080
  • [32] Poincare's theorem for the modular group of real Riemann surfaces
    Costa, Antonio F.
    Natanzon, Sergey M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (05) : 680 - 690
  • [33] Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces
    Goldman, William M.
    Xia, Eugene Z.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 193 (904) : 1 - +
  • [35] Riemann surfaces with real forms which have maximal cyclic symmetry
    Bujalance, E
    Cirre, FJ
    Turbek, P
    JOURNAL OF ALGEBRA, 2005, 283 (02) : 447 - 456
  • [36] p-Groups of automorphisms of compact non-orientable Riemann surfaces
    E. Bujalance
    F. J. Cirre
    J. M. Gamboa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [37] p-Groups of automorphisms of compact non-orientable Riemann surfaces
    Bujalance, E.
    Cirre, F. J.
    Gamboa, J. M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [38] HOMOTOPY DECOMPOSITIONS OF GAUGE GROUPS OVER RIEMANN SURFACES AND APPLICATIONS TO MODULI SPACES
    Theriault, Stephen D.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (12) : 1711 - 1719
  • [39] Maximal and Non-maximal NEC and Fuchsian groups uniformizing Klein and Riemann surfaces
    Costa, Antonio F.
    Izquierdo, Milagros
    Porto, Ana M.
    RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES, 2014, 629 : 107 - +
  • [40] Dihedral Groups of Order 2p of Automorphisms of Compact Riemann Surfaces of Genus p-1
    Yang, Qingjie
    Zhong, Weiting
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (01): : 196 - 206