On support sizes of restricted isometry constants

被引:16
作者
Blanchard, Jeffrey D. [1 ]
Thompson, Andrew [2 ,3 ]
机构
[1] Grinnell Coll, Dept Math & Stat, Grinnell, IA 50112 USA
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JL, Midlothian, Scotland
[3] Univ Edinburgh, Maxwell Inst, Edinburgh EH9 3JL, Midlothian, Scotland
基金
美国国家科学基金会;
关键词
Compressed sensing; Restricted isometry constants; Restricted isometry property; Sparse approximation; Sparse signal recovery; SIGNAL RECOVERY; EQUATIONS;
D O I
10.1016/j.acha.2010.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generic tool for analyzing sparse approximation algorithms is the restricted isometry property (RIP) introduced by Candes and Tao (2005) [11]. If R(k, n, N) is the RIP constant with support size k for an n x N measurement matrix, we investigate the trend of reducing the support size of the RIP constants for qualitative comparisons between sufficient conditions. For example, which condition is easier to satisfy, R(4k,n, N) < 0.1 or R(2k, n, N) < 0.025? Using a quantitative comparison via phase transitions for Gaussian measurement matrices, three examples from the literature of such support size reduction are considered. In each case, utilizing a larger support size for the RIP constants results in a sufficient condition for exact sparse recovery that is satisfied by a significantly larger subset of Gaussian matrices. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 390
页数:9
相关论文
共 24 条
[1]  
Blanchard J., 2010, SIAM REV IN PRESS
[2]  
Blanchard J. D., 2009, PHASE TRANSITI UNPUB
[3]  
Blanchard J. D., 2009, P SIGN PROC AD SPARS
[4]  
BLUMENSATH T, 2009, IEEE J SEL IN PRESS
[5]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[6]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[7]  
CAI TT, 2009, ARXIV09111564V1
[8]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69
[9]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[10]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592