Spectral representation of solution of cubically nonlinear equation for the Riemann simple wave

被引:6
作者
Gusev, V. A. [1 ]
Makov, Yu. N. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
基金
俄罗斯基础研究基金会;
关键词
BEAMS;
D O I
10.1134/S1063771010050040
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For the implicit solution to the cubically nonlinear equation of the Riemann wave (a simple wave equation), its exact explicit Fourier transform is obtained. The latter corresponds to the transformation of the initial sinusoidal profile until the discontinuity formation and, beyond it, to the asymptotic behavior of the same profile at large distances. The significance of the given solutions for the problems with cubic nonlinearity is identical to the significance of the well-known Fubini solution and the limiting version of the Fay solution for conventional nonlinear acoustics.
引用
收藏
页码:626 / 631
页数:6
相关论文
共 12 条
[1]  
Abramovitz M., 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1983, INTEGRALS SERIES SPE
[3]   Plane sound waves of finite amplitude [J].
Fay, RD .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1931, 3 (02) :222-241
[4]  
Fubini F., 1935, ALTA FREQ, V4, P530
[5]   NONLINEAR-WAVE MOTION GOVERNED BY THE MODIFIED BURGERS-EQUATION [J].
LEEBAPTY, IP ;
CRIGHTON, DG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 323 (1570) :173-209
[6]  
Prudnikov A.P., 1981, Integrals and Series. Elementary Functions
[7]  
Rudenko O.V, 1993, ADV NONLINEAR ACOUST, P3
[8]  
RUDENKO OV, 1993, KVANTOVAYA ELEKTRON+, V20, P1028
[9]  
RUDENKO OV, 1995, ACOUST PHYS+, V41, P725
[10]  
RUDENKO OV, 1994, SOV PHYS JETP, V79, P220