Synthesis of Robust Silicon Nanoparticles@Void@Graphitic Carbon Spheres for High-Performance Lithium-Ion-Battery Anodes

被引:24
作者
Ma, Xiaomei [1 ,2 ]
Gao, Yujie [1 ,2 ]
Chen, Min [1 ,2 ]
Wu, Limin [1 ,2 ]
机构
[1] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
silicon nanoparticles; graphitic carbon spheres; composite hollow spheres; anode materials; lithium-ion batteries; STORAGE; IMPEDANCE; SURFACE; DESIGN; GROWTH; MICROSPHERES; NANOSPHERES; FABRICATION; ELECTRODES; FRAMEWORK;
D O I
10.1002/celc.201700173
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon is known to be a promising candidate anode material for lithium-ion batteries because of its ultrahigh capacity; however, its volume expansion/shrinkage during lithiation/delithiation reactions represent the biggest challenge in practical applications. In this paper, we successfully design and synthesize a new type of robust silicon nanoparticles@void@graphitic carbon spheres (Si@void@C) material to buffer the silicon volume changes in the cyclic lithiation/delithiation process. The as-obtained Si@void@C nanocomposite spheres with well-dispersed silicon nanoparticles, efficient void spaces, and graphitic carbon shells can endow this nanocomposite anode with the robustness to solve the volume expansion/shrinkage issue. As demonstrated by coin battery performances, the Si@void@C nanocomposite sphere-based anode exhibits a specific capacity retention of 1565 and 1260 mAhg(-1) at C/5 and C/2 (1C=4200 mAg(-1)), respectively, after 1000 cycles of deep charge/discharge processes (voltage between 0.01 and 2.7 V versus Li/Li+). It provides a promising anode for a safe and high-performance Si-based materials in high-performance lithium-ion batteries.
引用
收藏
页码:1463 / 1469
页数:7
相关论文
共 53 条
[31]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[32]   A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes [J].
Liu, Nian ;
Wu, Hui ;
McDowell, Matthew T. ;
Yao, Yan ;
Wang, Chongmin ;
Cui, Yi .
NANO LETTERS, 2012, 12 (06) :3315-3321
[33]  
LIU P, 1995, J POWER SOURCES, V56, P81, DOI 10.1016/0378-7753(95)02211-X
[34]   Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes [J].
Lu, Zhenda ;
Liu, Nian ;
Lee, Hyun-Wook ;
Zhao, Jie ;
Li, Weiyang ;
Li, Yuzhang ;
Cui, Yi .
ACS NANO, 2015, 9 (03) :2540-2547
[35]   Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes [J].
Ma, Xiaomei ;
Gan, Lihua ;
Liu, Mingxian ;
Tripathi, Pranav K. ;
Zhao, Yunhui ;
Xu, Zijie ;
Zhu, Dazhang ;
Chen, Longwu .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (22) :8407-8415
[36]   Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries [J].
Ma, Xiaomei ;
Liu, Mingxian ;
Gan, Lihua ;
Tripathi, Pranav K. ;
Zhao, Yunhui ;
Zhu, Dazhang ;
Xu, Zijie ;
Chen, Longwu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (09) :4135-4142
[37]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]
[38]   GROWTH OF NATIVE OXIDE ON A SILICON SURFACE [J].
MORITA, M ;
OHMI, T ;
HASEGAWA, E ;
KAWAKAMI, M ;
OHWADA, M .
JOURNAL OF APPLIED PHYSICS, 1990, 68 (03) :1272-1281
[39]   THERMODYNAMICS OF THE SI-C-O SYSTEM FOR THE PRODUCTION OF SILICON-CARBIDE AND METALLIC SILICON [J].
NAGAMORI, M ;
MALINSKY, I ;
CLAVEAU, A .
METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1986, 17 (03) :503-514
[40]   Control of Interfacial Layers for High-Performance Porous Si Lithium-Ion Battery Anode [J].
Park, Hyungmin ;
Lee, Sungjun ;
Yoo, Seungmin ;
Shin, Myoungsoo ;
Kim, Jieun ;
Chun, Myungjin ;
Choi, Nam-Soon ;
Park, Soojin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :16360-16367