Adelic path integrals for quadratic Lagrangians

被引:22
作者
Djordjevic, GS
Dragovich, B
Nesic, L
机构
[1] Univ Nis, Fac Sci, Dept Phys, YU-18001 Nish, Serbia
[2] Steklov Math Inst, Moscow 117966, Russia
[3] Inst Phys, YU-11001 Belgrade, Serbia
关键词
Adelie quantum mechanics; path integrals; quadratic Lagrangians;
D O I
10.1142/S0219025703001134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Feynman's path integral in adelic quantum mechanics is considered. The propagator K(x", t"; x', t') for one-dimensional adelic systems with quadratic Lagrangians is analytically evaluated. Obtained exact general formula has the form which is invariant under interchange of the number fields R and Qp.
引用
收藏
页码:179 / 195
页数:17
相关论文
共 50 条
[41]   Optimal multigrid algorithms for the massive Gaussian model and path integrals [J].
Brandt, A ;
Galun, M .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (5-6) :1503-1518
[42]   The Beginnings of a Quantum GEM Gravity Theory Based on Path Integrals [J].
Brandenburg, John .
SPACE, PROPULSION & ENERGY SCIENCES INTERNATIONAL FORUM SPESIF-2009, 2009, 1103 :185-193
[43]   Path Integrals for a Class of P-Adic Schrödinger Equations [J].
V. S. Varadarajan .
Letters in Mathematical Physics, 1997, 39 :97-106
[44]   Heat kernel asymptotics, path integrals and infinite-dimensional determinants [J].
Ludewig, Matthias .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 131 :66-88
[45]   Coherent-state path integrals in the continuum: The SU(2) case [J].
Kordas, G. ;
Kalantzis, D. ;
Karanikas, A. I. .
ANNALS OF PHYSICS, 2016, 372 :226-237
[46]   Path Integrals for Nonadiabatic Dynamics: Multistate Ring Polymer Molecular Dynamics [J].
Ananth, Nandini .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2022, 73 :299-322
[47]   LETTER: Entropy Using Path Integrals for Quantum Black Hole Models [J].
O. Obregón ;
M. Sabido ;
V. I. Tkach .
General Relativity and Gravitation, 2001, 33 :913-919
[48]   Smooth functional derivatives in Feynman path integrals by time slicing approximation [J].
Fujiwara, D ;
Kumano-go, N .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (01) :57-79
[49]   Phase space Feynman path integrals of parabolic type with smooth functional derivatives [J].
Kumano-go, Naoto .
BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 153 :1-27
[50]   Path integrals in fluctuating markets with a non-Gaussian option pricing model [J].
Bonnet, FDR ;
van der Hoek, J ;
Allison, A ;
Abbott, D .
Noise and Fluctuations in Econophysics and Finance, 2005, 5848 :66-85