Adelic path integrals for quadratic Lagrangians

被引:22
作者
Djordjevic, GS
Dragovich, B
Nesic, L
机构
[1] Univ Nis, Fac Sci, Dept Phys, YU-18001 Nish, Serbia
[2] Steklov Math Inst, Moscow 117966, Russia
[3] Inst Phys, YU-11001 Belgrade, Serbia
关键词
Adelie quantum mechanics; path integrals; quadratic Lagrangians;
D O I
10.1142/S0219025703001134
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Feynman's path integral in adelic quantum mechanics is considered. The propagator K(x", t"; x', t') for one-dimensional adelic systems with quadratic Lagrangians is analytically evaluated. Obtained exact general formula has the form which is invariant under interchange of the number fields R and Qp.
引用
收藏
页码:179 / 195
页数:17
相关论文
共 50 条
[21]   Path Integrals for Pseudo-Hermitian Hamiltonians [J].
R. J. Rivers .
International Journal of Theoretical Physics, 2011, 50 :1081-1096
[22]   PHASE SPACE PATH INTEGRALS AND THEIR SEMICLASSICAL APPROXIMATIONS [J].
Kumano-Go, N. ;
Fujiwara, D. .
PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, :102-+
[23]   Master equations and the theory of stochastic path integrals [J].
Weber, Markus F. ;
Frey, Erwin .
REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (04)
[24]   Review of quantum path integrals in fluctuating markets [J].
Bonnet, FDR ;
Allison, A ;
Abbott, D .
MICROELECTRONICS: DESIGN, TECHNOLOGY, AND PACKAGING, 2004, 5274 :569-580
[25]   Path integrals from spacetime quantum actions [J].
Diaz, N. L. ;
Matera, J. M. ;
Rossignoli, R. .
ANNALS OF PHYSICS, 2025, 479
[26]   Research progress of measurement of propagators in path integrals [J].
Tian, Li-Man ;
Wen, Yong-Li ;
Wang, Yun-Fei ;
Zhang, Shan-Chao ;
Li, Jian-Feng ;
Du, Jing-Song ;
Yan, Hui ;
Zhu, Shi-Liang .
ACTA PHYSICA SINICA, 2023, 72 (20)
[27]   Path Integrals for Pseudo-Hermitian Hamiltonians [J].
Rivers, R. J. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) :1081-1096
[28]   PATH INTEGRALS FOR QUASI-HERMITIAN HAMILTONIANS [J].
Rivers, R. J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (05) :919-932
[29]   Application of path integrals in modeling transmission line loss [J].
Rubin, LM .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART B-ADVANCED PACKAGING, 1996, 19 (04) :775-788
[30]   A unifying representation of path integrals for fractional Brownian motions [J].
Benichou, Olivier ;
Oshanin, Gleb .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (22)