Quantifying the Impact of Synoptic Weather Systems on High PM2.5 Episodes in the Seoul Metropolitan Area, Korea

被引:18
作者
Chang, L. -S [1 ]
Lee, G. [2 ,3 ]
Im, H. [4 ]
Kim, D. [1 ]
Park, S-M [1 ]
Choi, W. J. [1 ]
Lee, Y. [1 ]
Lee, D. -W [1 ]
Kim, D-G [1 ]
Lee, D. [1 ]
Kim, Y-W [1 ]
Kim, J. [4 ]
Ho, C. -H [2 ]
机构
[1] Natl Inst Environm Res, Incheon, South Korea
[2] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South Korea
[3] Chungnam Natl Univ, Dept Atmospher Sci, Daejeon, South Korea
[4] Natl Inst Meteorol Sci, Jeju, South Korea
基金
新加坡国家研究基金会;
关键词
high PM2; 5; episodes; Korea; principal component analysis and regression; Seoul; synoptic weather patterns; AIR-QUALITY; SOUTH-KOREA; METEOROLOGICAL MODES; PM10; CONCENTRATION; URBAN AIR; VARIABILITY; SENSITIVITY; EMISSIONS; CLIMATE; CHINA;
D O I
10.1029/2020JD034085
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Variations in concentrations of PM2.5, particulate matters of diameters below 2.5 mu m, vary following both meteorological conditions and emissions controls. Meteorological conditions particularly affect short-term high PM2.5 episodes through accumulations, transports, and secondary formations. This study quantifies the meteorological impacts on high PM2.5 episodes in the Seoul Metropolitan Area (SMA), Korea, for the period 2016-2018 using empirical and statistical methods. Synoptic weather maps of 77 high PM2.5 episodes in 2016 are grouped into two synoptic types: onshore winds associated with migratory pressure systems over the SMA and offshore winds from continental high pressure extending toward the SMA. We applied principal component analysis and regression to extract the dominant synoptic types controlling PM2.5 variability. It identifies two major principal components (PCs) from 12 surface and upper-air meteorological variables for 2017-2018. Weather patterns in 49 examples of the high-positive PCs show that the two PCs are capable of reproducing the synoptic weather patterns relevant for high PM2.5 episodes. To quantify the relationship between the synoptic weather patterns and PM2.5 levels, the two PCs are further classified into four groups according to their signs. Positive- and negative-PC groups are associated with about 82% and 73% of high- and low-PM2.5 episodes, respectively, suggesting that most of the high/low PM2.5 episodes in the SMA can occur under the two PCs-dominant weather conditions. The results can be utilized as a reference for daily predictions of high PM2.5 episodes, as well as for quantitative analysis of the climatic influence on the long-term PM2.5 variability.
引用
收藏
页数:17
相关论文
共 45 条
[1]  
Bae C, 2017, J KOREAN SOC ATMOS E, V33, P497, DOI 10.5572/KOSAE.2017.33.5.497
[2]  
Cai WJ, 2017, NAT CLIM CHANGE, V7, P257, DOI [10.1038/NCLIMATE3249, 10.1038/nclimate3249]
[3]   Human-model hybrid Korean air quality forecasting system [J].
Chang, Lim-Seok ;
Cho, Ara ;
Park, Hyunju ;
Nam, Kipyo ;
Kim, Deokrae ;
Hong, Ji-Hyoung ;
Song, Chang-Keun .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2016, 66 (09) :896-911
[4]   Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign [J].
Choi, Jinkyul ;
Park, Rokjin J. ;
Lee, Hyung-Min ;
Lee, Seungun ;
Jo, Duseong S. ;
Jeong, Jaein I. ;
Henze, Daven K. ;
Woo, Jung-Hun ;
Ban, Soo-Jin ;
Lee, Min-Do ;
Lim, Cheol-Soo ;
Park, Mi-Kyung ;
Shin, Hye J. ;
Cho, Seogju ;
Peterson, David ;
Song, Chang-Keun .
ATMOSPHERIC ENVIRONMENT, 2019, 203 :196-205
[5]   Assessment of transboundary ozone contribution toward South Korea using multiple source-receptor modeling techniques [J].
Choi, Ki-Chul ;
Lee, Jong-Jae ;
Bae, Chang Han ;
Kim, Cheol-Hee ;
Kim, Soontae ;
Chang, Lim-Seok ;
Ban, Soo-Jin ;
Lee, Suk-Jo ;
Kim, Jongchoon ;
Woo, Jung-Hun .
ATMOSPHERIC ENVIRONMENT, 2014, 92 :118-129
[6]   GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia [J].
Choi, Myungje ;
Kim, Jhoon ;
Lee, Jaehwa ;
Kim, Mijin ;
Park, Young-Je ;
Holben, Brent ;
Eck, Thomas F. ;
Li, Zhengqiang ;
Song, Chul H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) :385-408
[7]   Sensitivity of PM2.5 to climate in the Eastern US:: a modeling case study [J].
Dawson, J. P. ;
Adams, P. J. ;
Pandis, S. N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (16) :4295-4309
[8]   Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments [J].
Gao, Xiaomei ;
Yang, Lingxiao ;
Cheng, Shuhui ;
Gao, Rui ;
Zhou, Yang ;
Xue, Likun ;
Shou, Youping ;
Wang, Jing ;
Wang, Xinfeng ;
Nie, Wei ;
Xu, Pengju ;
Wang, Wenxing .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (33) :6048-6056
[9]  
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2016, IARC Monogr Eval Carcinog Risks Hum, V109, P9
[10]   Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ [J].
Jordan, Carolyn E. ;
Crawford, James H. ;
Beyersdorf, Andreas J. ;
Eck, Thomas F. ;
Halliday, Hannah S. ;
Nault, Benjamin A. ;
Chang, Lim-Seok ;
Park, JinSoo ;
Park, Rokjin ;
Lee, Gangwoong ;
Kim, Hwajin ;
Ahn, Jun-Young ;
Cho, Seogju ;
Shin, Hye Jung ;
Lee, Jae Hong ;
Jung, Jinsang ;
Kim, Deug-Soo ;
Lee, Meehye ;
Lee, Taehyoung ;
Whitehill, Andrew ;
Szykman, James ;
Schueneman, Melinda K. ;
Campuzano-Jost, Pedro ;
Jimenez, Jose L. ;
DiGangi, Joshua P. ;
Diskin, Glenn S. ;
Anderson, Bruce E. ;
Moore, Richard H. ;
Ziemba, Luke D. ;
Fenn, Marta A. ;
Hair, Johnathan W. ;
Kuehn, Ralph E. ;
Holz, Robert E. ;
Chen, Gao ;
Travis, Katherine ;
Shook, Michael ;
Peterson, David A. ;
Lamb, Kara D. ;
Schwarz, Joshua P. .
ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2020, 8