Alzheimer's Disease and Frontotemporal Dementia: A Robust Classification Method of EEG Signals and a Comparison of Validation Methods

被引:68
作者
Miltiadous, Andreas [1 ]
Tzimourta, Katerina D. [2 ]
Giannakeas, Nikolaos [1 ]
Tsipouras, Markos G. [2 ]
Afrantou, Theodora [3 ]
Ioannidis, Panagiotis [3 ]
Tzallas, Alexandros T. [1 ]
机构
[1] Univ Ioannina, Sch Informat & Telecommun, Dept Informat & Telecommun, Kostakioi 47100, Arta, Greece
[2] Univ Western Macedonia, Fac Engn, Dept Elect & Comp Engn, Kozani 50100, Greece
[3] Aristotle Univ Thessaloniki, AHEPA Univ Hosp, Dept Neurol 2, GR-54636 Thessaloniki, Greece
关键词
electroencephalogram; EEG; dementia; Alzheimer's disease; frontotemporal dementia; classification; k-fold; leave-one-patient-out; BRAIN-COMPUTER INTERFACES; QUANTITATIVE EEG; SPECTRAL-ANALYSIS; DIAGNOSIS; ABNORMALITIES; APHASIA;
D O I
10.3390/diagnostics11081437
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Dementia is the clinical syndrome characterized by progressive loss of cognitive and emotional abilities to a degree severe enough to interfere with daily functioning. Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 50-70% of total dementia cases. Another dementia type is frontotemporal dementia (FTD), which is associated with circumscribed degeneration of the prefrontal and anterior temporal cortex and mainly affects personality and social skills. With the rapid advancement in electroencephalogram (EEG) sensors, the EEG has become a suitable, accurate, and highly sensitive biomarker for the identification of neuronal and cognitive dynamics in most cases of dementia, such as AD and FTD, through EEG signal analysis and processing techniques. In this study, six supervised machine-learning techniques were compared on categorizing processed EEG signals of AD and FTD cases, to provide an insight for future methods on early dementia diagnosis. K-fold cross validation and leave-one-patient-out cross validation were also compared as validation methods to evaluate their performance for this classification problem. The proposed methodology accuracy scores were 78.5% for AD detection with decision trees and 86.3% for FTD detection with random forests.
引用
收藏
页数:12
相关论文
共 53 条
  • [1] Predicting Diagnosis of Alzheimer's Disease and Related Dementias Using Administrative Claims
    Albrecht, Jennifer S.
    Hanna, Maya
    Kim, Dure
    Perfetto, Eleanor M.
    [J]. JOURNAL OF MANAGED CARE & SPECIALTY PHARMACY, 2018, 24 (11) : 1138 - 1145
  • [2] [Anonymous], 2012, P 2012 25 IEEE INT S, DOI DOI 10.1109/CBMS.2012.6266355
  • [3] [Anonymous], 2013, J NEUROL NEUROPHYSIO, V4, DOI [10.4172/2155-9562.1000149, DOI 10.4172/2155-9562.1000149]
  • [4] Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer's and Lewy body diseases: an EEG study
    Babiloni, Claudio
    Del Percio, Claudio
    Lizio, Roberta
    Noce, Giuseppe
    Lopez, Susanna
    Soricelli, Andrea
    Ferri, Raffaele
    Nobili, Flavio
    Arnaldi, Dario
    Fama, Francesco
    Aarsland, Dag
    Orzi, Francesco
    Buttinelli, Carla
    Giubilei, Franco
    Onofrj, Marco
    Stocchi, Fabrizio
    Stirpe, Paola
    Fuhr, Peter
    Gschwandtner, Ute
    Ransmayr, Gerhard
    Garn, Heinrich
    Fraioli, Lucia
    Pievani, Michela
    Frisoni, Giovanni B.
    D'Antonio, Fabrizia
    De Lena, Carlo
    Guntekin, Bahar
    Hanoglu, Lutfu
    Bazar, Erol
    Yener, Gorsev
    Emek-Savas, Derya Durusu
    Triggiani, Antonio Ivano
    Franciotti, Raffaella
    Taylor, John Paul
    Vacca, Laura
    De Pandis, Maria Francesca
    Bonanni, Laura
    [J]. NEUROBIOLOGY OF AGING, 2018, 65 : 18 - 40
  • [5] Classification of Single Normal and Alzheimer's Disease Individuals from Cortical Sources of Resting State EEG Rhythms
    Babiloni, Claudio
    Triggiani, Antonio I.
    Lizio, Roberta
    Cordone, Susanna
    Tattoli, Giacomo
    Bevilacqua, Vitoantonio
    Soricelli, Andrea
    Ferri, Raffaele
    Nobili, Flavio
    Gesualdo, Loreto
    Millan-Calenti, Jose C.
    Bujan, Ana
    Tortelli, Rosanna
    Cardinali, Valentina
    Barulli, Maria Rosaria
    Giannini, Antonio
    Spagnolo, Pantaleo
    Armenise, Silvia
    Buenza, Grazia
    Scianatico, Gaetano
    Logroscino, Giancarlo
    Frisoni, Giovanni B.
    del Percio, Claudio
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [6] Balamurugan M., 2017, BIOMED PHARMACOL J, V10, P1823, DOI DOI 10.13005/bpj/1299
  • [7] Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer's disease
    Bradley, K. M.
    O'Sullivan, V. T.
    Soper, N. D. W.
    Nagy, Z.
    King, E. M. -F.
    Smith, A. D.
    Shepstone, B. J.
    [J]. BRAIN, 2002, 125 : 1772 - 1781
  • [8] Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?
    Caso, Francesca
    Cursi, Marco
    Magnani, Giuseppe
    Fanelli, Giovanna
    Falautano, Monica
    Comi, Giancarlo
    Leocani, Letizia
    Minicucci, Fabio
    [J]. NEUROBIOLOGY OF AGING, 2012, 33 (10) : 2343 - 2356
  • [9] Nonpharmacological Interventions to Reduce Behavioral and Psychological Symptoms of Dementia: A Systematic Review
    de Oliveira, Alexandra Martini
    Radanovic, Marcia
    Homem de Mello, Patricia Cotting
    Buchain, Patricia Cardoso
    Barbosa Vizzotto, Adriana Dias
    Celestino, Diego L.
    Stella, Florindo
    Piersol, Catherine V.
    Forlenza, Orestes V.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [10] Towards affordable biomarkers of frontotemporal dementia: A classification study via network's information sharing
    Dottori, Martin
    Sedeno, Lucas
    Martorell Caro, Miguel
    Alifano, Florencia
    Hesse, Eugenia
    Mikulan, Ezequiel
    Garcia, Adolfo M.
    Ruiz-Tagle, Amparo
    Lillo, Patricia
    Slachevsky, Andrea
    Serrano, Cecilia
    Fraiman, Daniel
    Ibanez, Agustin
    [J]. SCIENTIFIC REPORTS, 2017, 7