Generalized coherent pairs

被引:11
作者
Kwon, KH [1 ]
Lee, JH
Marcellán, F
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Univ Carlos III Madrid, Dept Math, Madrid 28911, Spain
关键词
generalized coherent pairs; orthogonal polynomials; Sobolev orthogonal polynomials;
D O I
10.1006/jmaa.2000.7157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pair of quasi-definite moment functionals {u(0),u(1)} is a generalized coherent pair if monic orthogonal polynomials {Pn(x)}(n=0)(proportional to), and {R-n(x)}(n=0)(infinity), relative to u(0) and u(1), respectively, satisfy a relation R-n(x) = 1/n+1 P'(n+1)(x)- sigma (n)/n P'(n)(x)-tau (n-1)/n-1 P'(n-1)(X), n greater than or equal to2 where sigma (n) and tau (n) are arbitrary constants, which may be zero. If {u(0),u(1)} is a generalized coherent pair, then u(0) and u(1) must be semiclassical. We find conditions under which either u(0) or u(1) is classical. In such a case, we also determine the types of the "companion" moment functionals. Also some illustrating examples and two ways of generating generalized coherent pairs are given. We also discuss the corresponding Sobolev orthogonal polynomials, (C) 2001 Academic Press.
引用
收藏
页码:482 / 514
页数:33
相关论文
共 28 条
[1]  
[Anonymous], RESULTS MATH
[2]  
BELMEHDRI S, 1991, ORTHOGONAL POLYNOMIA, P169
[3]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[4]  
BRANQUINHO A, 1996, INT J MATH MATH SCI, V19, P643, DOI DOI 10.1155/S0161171296000919
[5]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[6]  
Chihara TS., 1957, Proc. Am. Math. Soc., V8, P899, DOI 10.1090/S0002-9939-1957-0092015-5
[7]  
de Bruin M.G., 1995, ANN NUMER MATH, V2, P233
[8]  
DRAIDI N, 1989, POLINOMIOS ORTOGONAL, P83
[9]  
Hahn Wolfgang, 1935, MATH Z, V39, P634, DOI [10.1007/BF01201380, DOI 10.1007/BF01201380]
[10]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175