Real-Time Signal Processing for Mitigating SiPM Dark Noise Effects in a Scintillating Neutron Detector

被引:2
|
作者
Pritchard, K. [1 ]
Chabot, J. P. [1 ]
Robucci, R. [2 ]
Choa, F. S. [2 ]
Osovizky, A. [3 ,4 ]
Ziegler, J. [1 ]
Binkley, E. [1 ]
Tsai, P. [1 ]
Hadad, N. [1 ]
Jackson, M. [5 ]
Hurlbut, C. [5 ]
Baltic, G. M. [1 ]
Majkrzak, C. F. [1 ]
Maliszewskyj, N. C. [1 ]
机构
[1] NIST, US Dept Commerce, Gaithersburg, MD 20899 USA
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[3] Rotem Ind, IL-85339 Lehavim, Israel
[4] Nucl Res Ctr Negev, IL-84190 Beer Sheva, Israel
[5] Eljen Technol, Sweetwater, TX 79556 USA
基金
美国国家科学基金会;
关键词
Neutrons; Detectors; Electronic mail; Photonics; Thermal noise; Shape; Filtering algorithms; Dark noise; LiF; ZnS; neutron detector; real-time; scintillator; silicon photomultiplier (SiPM); WLS fiber; PULSE-SHAPE-DISCRIMINATION; DIGITAL DISCRIMINATION; GAMMA DISCRIMINATION; LIQUID; OPTIMIZATION; ALGORITHMS; READOUT; RAYS;
D O I
10.1109/TNS.2021.3091008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A (LiF)-Li-6:ZnS(Ag)-based cold neutron detector with wavelength shifting (WLS) fibers and Silicon photomultiplier (SiPM) photodetector was developed at the NIST Center for Neutron Research. For neutron scattering applications at the NCNR, detector false positives severely diminish the quality of very faint neutron scatter patterns. Thermal noise generated by the SiPM significantly increases the likelihood of false positives by the detector/discriminator. This article describes and evaluates a digital real-time algorithm implemented on a field programmable gate array (FPGA) which quickly differentiates SiPM thermal noise and noise pulse pile-up from neutron signals. The algorithm reduces deadtime spent on examining noise pulses as well as reduces the number of false positives.
引用
收藏
页码:1519 / 1527
页数:9
相关论文
共 50 条
  • [31] REAL-TIME SIGNAL-PROCESSING OF NOISE DATA USING CROSS-PROPERTY TECHNIQUES
    KELLER, AC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 59 : S1 - S1
  • [32] A High-Speed Real-Time Nanopore Signal Detector
    Huang, Yiyun
    Magierowski, Sebastian
    Ghafar-Zadeh, Ebrahim
    Wang, Chengjie
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 346 - 353
  • [33] Development of compact and real-time radiation detector based on SiPM for gamma-ray spectroscopy
    Kim, J. H.
    Park, H. M.
    Joo, K. S.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [34] Real-Time Digital Signal Processing for QPSK Transmission
    Noe, Reinhold
    Hoffmann, Sebastian
    2010 15TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC), 2010, : 150 - 151
  • [35] TOOLS FOR REAL-TIME SIGNAL-PROCESSING RESEARCH
    SNYDER, JH
    QUACKENBUSH, SR
    MELCHNER, MJ
    KAPILOW, DA
    IEEE COMMUNICATIONS MAGAZINE, 1993, 31 (11) : 64 - 74
  • [36] Signal processing aspects of real-time DNA microarrays
    Vikalo, H.
    Hassibi, B.
    Hassibi, A.
    2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 217 - +
  • [37] COSMIC: a real-time platform for signal processing pipelines
    Ferreira, Florian
    Bernard, Julien
    Sevin, Arnaud
    Doucet, Nicolas
    Gratadour, Damien
    2022 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2022, : 37 - 42
  • [38] pyNeurode: a real-time neural signal processing framework
    Tam, Wing-Kin
    Nolan, Matthew F.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 1943 - 1947
  • [39] SOS TECHNOLOGY FOR REAL-TIME SIGNAL PROCESSING.
    Saultz, J.
    Ozga, S.
    Helbig, W.
    RCA Engineer, 1979, 24 (06): : 47 - 54
  • [40] Wearable sensors for real-time musical signal processing
    Kapur, A
    Yang, EL
    Tindale, AR
    Driessen, PF
    2005 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2005, : 424 - 427