DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY

被引:3
|
作者
Zhang, Yiming [1 ]
Skakun, Sergii [1 ,2 ]
Prudente, Victor [1 ,3 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] NASA, Goddard Space Flight Ctr, Code 619, Greenbelt, MD 20771 USA
[3] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil
关键词
Sentinel-2; impervious surface; change map; neural networks; PERFORMANCE;
D O I
10.1109/IGARSS39084.2020.9323327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting changes in impervious surface cover is one of the most important topics in land cover and land use (LCLU) change. This study focuses on detecting infrastructure constructions, such as residential areas, commercial building, and roads, in the State of Maryland (US) from 2018 to 2019 by utilizing Sentinel-2 images at 10 m spatial resolution. We use a time-series of Sentinel-2 images to derive land cover maps in 2018 and 2019 and derive the change detection map. The multi-layer perceptron (MLP) neural network is used to classify satellite images into general land cover classes (impervious surface, forest/tree cover, grassland/cropland, water). The derived change detection map allows one to identify areas of changes with new constructions.
引用
收藏
页码:4787 / 4790
页数:4
相关论文
共 50 条
  • [31] Automated Mosaicking of Sentinel-2 Satellite Imagery
    Shepherd, James D.
    Schindler, Jan
    Dymond, John R.
    REMOTE SENSING, 2020, 12 (22) : 1 - 14
  • [32] Estimating Aboveground Biomass on Private Forest Using Sentinel-2 Imagery
    Askar
    Nuthammachot, Narissara
    Phairuang, Worradorn
    Wicaksono, Pramaditya
    Sayektiningsih, Tri
    JOURNAL OF SENSORS, 2018, 2018
  • [33] Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning
    Chen, Yun
    Guerschman, Juan
    Shendryk, Yuri
    Henry, Dave
    Harrison, Matthew Tom
    REMOTE SENSING, 2021, 13 (04) : 1 - 20
  • [34] Forage Biomass Estimation Using Sentinel-2 Imagery at High Latitudes
    Peng, Junxiang
    Zeiner, Niklas
    Parsons, David
    Feret, Jean-Baptiste
    Soderstrom, Mats
    Morel, Julien
    REMOTE SENSING, 2023, 15 (09)
  • [35] SEMANTIC SEGMENTATION OF OIL WELL SITES USING SENTINEL-2 IMAGERY
    Wu, Hao
    Dong, Hongli
    Wang, Zhibao
    Bai, Lu
    Huo, Fengcai
    Tao, Jinhua
    Chen, Liangfu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6901 - 6904
  • [36] Wheat yield estimation using fused Cubesat and Sentinel-2 imagery
    Sadeh, Y.
    Zhu, X.
    Dunkerley, D.
    Walker, J. P.
    Chenu, K.
    PRECISION AGRICULTURE'21, 2021, : 575 - 582
  • [37] Tree species classification using Sentinel-2 imagery and Bayesian inference
    Axelsson, Arvid
    Lindberg, Eva
    Reese, Heather
    Olsson, Hakan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 100
  • [38] Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
    Shahabi, Hejar
    Rahimzad, Maryam
    Piralilou, Sepideh Tavakkoli
    Ghorbanzadeh, Omid
    Homayouni, Saied
    Blaschke, Thomas
    Lim, Samsung
    Ghamisi, Pedram
    REMOTE SENSING, 2021, 13 (22)
  • [39] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [40] SEMI-SUPERVISED DEEP LEARNING FOR CHANGE DETECTION IN AGRICULTURAL FIELDS USING SENTINEL-2 IMAGERY
    Tsardanidis, Iason
    Kontoes, Charalampos
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1942 - 1945