DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY

被引:3
|
作者
Zhang, Yiming [1 ]
Skakun, Sergii [1 ,2 ]
Prudente, Victor [1 ,3 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] NASA, Goddard Space Flight Ctr, Code 619, Greenbelt, MD 20771 USA
[3] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil
关键词
Sentinel-2; impervious surface; change map; neural networks; PERFORMANCE;
D O I
10.1109/IGARSS39084.2020.9323327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting changes in impervious surface cover is one of the most important topics in land cover and land use (LCLU) change. This study focuses on detecting infrastructure constructions, such as residential areas, commercial building, and roads, in the State of Maryland (US) from 2018 to 2019 by utilizing Sentinel-2 images at 10 m spatial resolution. We use a time-series of Sentinel-2 images to derive land cover maps in 2018 and 2019 and derive the change detection map. The multi-layer perceptron (MLP) neural network is used to classify satellite images into general land cover classes (impervious surface, forest/tree cover, grassland/cropland, water). The derived change detection map allows one to identify areas of changes with new constructions.
引用
收藏
页码:4787 / 4790
页数:4
相关论文
共 50 条
  • [21] Quantifying Hail Damage in Crops Using Sentinel-2 Imagery
    Ha, Thuan
    Shen, Yanben
    Duddu, Hema
    Johnson, Eric
    Shirtliffe, Steven J.
    REMOTE SENSING, 2022, 14 (04)
  • [22] Automated Marine Debris Detection from Sentinel-2 Satellite Imagery
    Priyadarshini, R.
    Arya, Varun
    Kamath, S. Sowmya
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 454 - 458
  • [23] Index-Based Identification of Surface Water Resources Using Sentinel-2 Satellite Imagery
    Sekertekin, Aliihsan
    Cicekli, Sevim Yasemin
    Arslan, Niyazi
    2018 2ND INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT), 2018, : 610 - 614
  • [24] Trees outside forest in Italian agroforestry landscapes: detection and mapping using sentinel-2 imagery
    Sarti, Maurizio
    Ciolfi, Marco
    Lauteri, Marco
    Paris, Pierluigi
    Chiocchini, Francesca
    EUROPEAN JOURNAL OF REMOTE SENSING, 2021, 54 (01) : 609 - 623
  • [25] Change Detection of Amazonian Alluvial Gold Mining Using Deep Learning and Sentinel-2 Imagery
    Camalan, Seda
    Cui, Kangning
    Pauca, Victor Paul
    Alqahtani, Sarra
    Silman, Miles
    Chan, Raymond
    Plemmons, Robert Jame
    Dethier, Evan Nylen
    Fernandez, Luis E.
    Lutz, David A.
    REMOTE SENSING, 2022, 14 (07)
  • [26] Remote detection of marine debris using Sentinel-2 imagery: A cautious note on spectral interpretations
    Hu C.
    Marine Pollution Bulletin, 2022, 183
  • [27] A Comparative Analysis of Index-Based Methods for Impervious Surface Mapping Using Multiseasonal Sentinel-2 Satellite Data
    Li, Congmin
    Shao, Zhenfeng
    Zhang, Lei
    Huang, Xiao
    Zhang, Ming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) : 3682 - 3694
  • [28] Mapping Mediterranean seagrasses with Sentinel-2 imagery
    Traganos, Dimosthenis
    Reinartz, Peter
    MARINE POLLUTION BULLETIN, 2018, 134 : 197 - 209
  • [29] Comparison of Masking Algorithms for Sentinel-2 Imagery
    Zekoll, Viktoria
    Main-Knorn, Magdalena
    Louis, Jerome
    Frantz, David
    Richter, Rudolf
    Pflug, Bringfried
    REMOTE SENSING, 2021, 13 (01) : 1 - 21
  • [30] INTERPRETABLE SCENICNESS FROM SENTINEL-2 IMAGERY
    Levering, Alex
    Marcos, Diego
    Lobry, Sylvain
    Tuia, Devis
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3983 - 3986