DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY

被引:3
|
作者
Zhang, Yiming [1 ]
Skakun, Sergii [1 ,2 ]
Prudente, Victor [1 ,3 ]
机构
[1] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[2] NASA, Goddard Space Flight Ctr, Code 619, Greenbelt, MD 20771 USA
[3] Natl Inst Space Res INPE, Sao Jose Dos Campos, Brazil
关键词
Sentinel-2; impervious surface; change map; neural networks; PERFORMANCE;
D O I
10.1109/IGARSS39084.2020.9323327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting changes in impervious surface cover is one of the most important topics in land cover and land use (LCLU) change. This study focuses on detecting infrastructure constructions, such as residential areas, commercial building, and roads, in the State of Maryland (US) from 2018 to 2019 by utilizing Sentinel-2 images at 10 m spatial resolution. We use a time-series of Sentinel-2 images to derive land cover maps in 2018 and 2019 and derive the change detection map. The multi-layer perceptron (MLP) neural network is used to classify satellite images into general land cover classes (impervious surface, forest/tree cover, grassland/cropland, water). The derived change detection map allows one to identify areas of changes with new constructions.
引用
收藏
页码:4787 / 4790
页数:4
相关论文
共 50 条
  • [1] A comparative study of impervious surface extraction using Sentinel-2 imagery
    Chen, Junyi
    Chen, Suozhong
    Yang, Chao
    He, Liang
    Hou, Manqing
    Shi, Tiezhu
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 274 - 292
  • [2] Detection and Monitoring of Maltese Shoreline Changes using Sentinel-2 Imagery
    Fejjari, Asma
    Valentino, Gianluca
    Briffa, Johann A.
    D'Amico, Sebastiano
    2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR THE SEA; LEARNING TO MEASURE SEA HEALTH PARAMETERS, METROSEA, 2023, : 52 - 56
  • [3] Automation of Surface Karst Assessment Using Sentinel-2 Satellite Imagery
    Drobinina, E. V.
    COSMIC RESEARCH, 2023, 61 (SUPPL 1) : S173 - S181
  • [4] A Ship-Wake Joint Detection Using Sentinel-2 Imagery
    Jeon, Woojin
    Jin, Donghyun
    Seong, Noh-hun
    Jung, Daeseong
    Sim, Suyoung
    Woo, Jongho
    Byeon, Yugyeong
    Kim, Nayeon
    Han, Kyung-Soo
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (01) : 77 - 86
  • [5] Investigation the seasonality effect on impervious surface detection from Sentinel-1 and Sentinel-2 images using Google Earth engine
    Todar, Seyed Arman Samadi
    Attarchi, Sara
    Osati, Khaled
    ADVANCES IN SPACE RESEARCH, 2021, 68 (03) : 1356 - 1365
  • [6] Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery
    Jolly, Ben
    Dymond, John R.
    Shepherd, James D.
    Greene, Terry
    Schindler, Jan
    REMOTE SENSING, 2022, 14 (07)
  • [7] Comparison of cloud detection algorithms for Sentinel-2 imagery
    Tarrio, Katelyn
    Tang, Xiaojing
    Masek, Jeffrey G.
    Claverie, Martin
    Ju, Junchang
    Qiu, Shi
    Zhu, Zhe
    Woodcock, Curtis E.
    SCIENCE OF REMOTE SENSING, 2020, 2
  • [8] Quantifying Qiyi Glacier Surface Dirtiness Using UAV and Sentinel-2 Imagery
    Chen, Jiangtao
    Wang, Ninglian
    Wu, Yuwei
    Chen, Anan
    Shi, Chenlie
    Zhao, Mingjie
    Xie, Longjiang
    REMOTE SENSING, 2024, 16 (17)
  • [9] Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery
    Bolivar-Santamaria, Sergio
    Reu, Bjorn
    AGROFORESTRY SYSTEMS, 2021, 95 (03) : 499 - 514
  • [10] Detection and characterization of agroforestry systems in the Colombian Andes using sentinel-2 imagery
    Sergio Bolívar-Santamaría
    Björn Reu
    Agroforestry Systems, 2021, 95 : 499 - 514