Localization of Analytic Regularity Criteria on the Vorticity and Balance Between the Vorticity Magnitude and Coherence of the Vorticity Direction in the 3D NSE

被引:17
|
作者
Grujic, Zoran [1 ]
Guberovic, Rafaela [1 ,2 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[2] Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
NAVIER-STOKES EQUATIONS; SUITABLE WEAK SOLUTIONS; INTERIOR REGULARITY; PLURISUBHARMONIC MEASURES; SPACES;
D O I
10.1007/s00220-010-1000-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The first part of the paper provides spatio-temporal localization of a family of analytic regularity classes for the 3D NSE obtained by Beirao Da Veiga (space-time integrability of the gradient of the velocity on R-3 x (0, T) which is out of the range of the Sobolev embedding theorem reduction to the classical Foias-Ladyzhenskaya-Prodi-Serrin space-time integrability conditions on the velocity) as well as the localization of the Beale-Kato-Majda regularity criterion (time integrability of the L-infinity-norm of the vorticity). The second part introduces a family of local, scaling invariant, hybrid geometric-analytic classes in which coherence of the vorticity direction serves as a weight in the local spatio-temporal integrability of the vorticity magnitude.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 50 条
  • [41] Development of high vorticity structures in incompressible 3D Euler equations
    Agafontsev, D. S.
    Kuznetsov, E. A.
    Mailybaev, A. A.
    PHYSICS OF FLUIDS, 2015, 27 (08)
  • [42] Regularity criterion for solutions to the Navier Stokes equations in the whole 3D space based on two vorticity components
    Guo, Zhengguang
    Kucera, Petr
    Skalak, Zdenek
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 755 - 766
  • [43] Rough sound waves in 3D compressible Euler flow with vorticity
    Marcelo M. Disconzi
    Chenyun Luo
    Giusy Mazzone
    Jared Speck
    Selecta Mathematica, 2022, 28
  • [44] Vorticity dynamics and control of the turning locomotion of 3D bionic fish
    Xin, Zhiqiang
    Wu, Chuijie
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2018, 232 (14) : 2524 - 2535
  • [45] 3D Hall-MHD system with vorticity in Besov spaces
    Zhang, Zujin
    ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 91 - 98
  • [46] A numerical method based on the Nambu bracket for the 3D vorticity equation
    Suzuki, Yukihito
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (03):
  • [47] The 3D Euler equations with inflow, outflow and vorticity boundary conditions
    Gie, Gung-Min
    Kelliher, James P.
    Mazzucato, Anna L.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 193
  • [48] Bounded vorticity for the 3D Ginzburg-Landau model and an isoflux problem
    Roman, Carlos
    Sandier, Etienne
    Serfaty, Sylvia
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (03) : 1015 - 1062
  • [49] VORTICITY FIELD STRUCTURE ASSOCIATED WITH THE 3D TOLLMIEN-SCHLICHTING WAVES
    HAMA, FR
    RIST, U
    KONZELMANN, U
    LAURIEN, E
    MEYER, F
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1987, 10 : 321 - 347
  • [50] Numerical simulation of 3D vorticity dynamics with the Diffused Vortex Hydrodynamics method
    Durante, D.
    Marrone, S.
    Brommel, D.
    Speck, R.
    Colagrossi, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 528 - 544