Improving microRNA target prediction with gene expression profiles

被引:18
|
作者
Ovando-Vazquez, Cesare [1 ]
Lepe-Soltero, Daniel [1 ]
Abreu-Goodger, Cei [1 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Unidad Genom Avanzada Langebio, Guanajuato 36821, Mexico
来源
BMC GENOMICS | 2016年 / 17卷
关键词
microRNA target prediction; Support Vector Machine; Gene expression profiles; Biological context; microRNA perturbation experiments; INTEGRATIVE ANALYSIS; RNA-SEQ; TOOLS; IDENTIFICATION; REPRESSION; MIR-29B; SHOWS;
D O I
10.1186/s12864-016-2695-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Mammalian genomes encode for thousands of microRNAs, which can potentially regulate the majority of protein-coding genes. They have been implicated in development and disease, leading to great interest in understanding their function, with computational methods being widely used to predict their targets. Most computational methods rely on sequence features, thermodynamics, and conservation filters; essentially scanning the whole transcriptome to predict one set of targets for each microRNA. This has the limitation of not considering that the same microRNA could have different sets of targets, and thus different functions, when expressed in different types of cells. Results: To address this problem, we combine popular target prediction methods with expression profiles, via machine learning, to produce a new predictor: TargetExpress. Using independent data from microarrays and high-throughput sequencing, we show that TargetExpress outperforms existing methods, and that our predictions are enriched in functions that are coherent with the added expression profile and literature reports. Conclusions: Our method should be particularly useful for anyone studying the functions and targets of miRNAs in specific tissues or cells. TargetExpress is available at: http://targetexpress.ceiabreulab.org/.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy
    Lin, Yi-Zhen
    Ou, Da-Liang
    Chang, Hsin-Yuan
    Lin, Wei-Yu
    Hsu, Chiun
    Chang, Po-Ling
    CHEMICAL SCIENCE, 2017, 8 (09) : 6670 - 6678
  • [12] miTarget: microRNA target gene prediction using a support vector machine
    Sung-Kyu Kim
    Jin-Wu Nam
    Je-Keun Rhee
    Wha-Jin Lee
    Byoung-Tak Zhang
    BMC Bioinformatics, 7
  • [13] A paradigm for class prediction using gene expression profiles
    Radmacher, MD
    McShane, LM
    Simon, R
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (03) : 505 - 511
  • [14] A PROBABILISTIC METHOD FOR PREDICTION OF MICRORNA-TARGET INTERACTIONS
    Ogul, Hasan
    Umu, Sinan U.
    Tuncel, Y. Yener
    Akkaya, Mahinur S.
    NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS, 2011, : 289 - 293
  • [15] A Distributed Classifier for MicroRNA Target Prediction with Validation Through TCGA Expression Data
    Ghoshal, Asish
    Zhang, Jinyi
    Roth, Michael A.
    Xia, Kevin Muyuan
    Grama, Ananth Y.
    Chaterji, Somali
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) : 1037 - 1051
  • [16] Comprehensive Overview and Assessment of microRNA Target Prediction Tools in Homo sapiens and Drosophila melanogaster
    Faiza, Muniba
    Tanveer, Khushnuma
    Fatihi, Saman
    Wang, Yonghua
    Raza, Khalid
    CURRENT BIOINFORMATICS, 2019, 14 (05) : 432 - 445
  • [17] Practical Aspects of microRNA Target Prediction
    Witkos, T. M.
    Koscianska, E.
    Krzyzosiak, W. J.
    CURRENT MOLECULAR MEDICINE, 2011, 11 (02) : 93 - 109
  • [18] COMPUTATIONAL METHODS FOR MICRORNA TARGET PREDICTION
    Watanabe, Yuka
    Tomita, Masaru
    Kanai, Akio
    MICRORNA METHODS, 2007, 427 : 65 - 86
  • [19] MicroRNA target prediction: theory and practice
    Wagner, Mathias
    Vicinus, Benjamin
    Frick, Vilma Oliveira
    Auchtor, Michael
    Rubie, Claudia
    Jeanmonod, Pascal
    Richards, Tereza A.
    Linder, Roland
    Weichert, Frank
    MOLECULAR GENETICS AND GENOMICS, 2014, 289 (06) : 1085 - 1101
  • [20] BosFinder: a novell pre-microRNA gene prediction algorithm in Bos taurus
    Sadeghi, B.
    Ahmadi, H.
    Azimzadeh-Jamalkandi, S.
    Nassiri, M. R.
    Masoudi-Nejad, A.
    ANIMAL GENETICS, 2014, 45 (04) : 479 - 484