A CONSTRUCTION OF LATTICES IN SPLITTABLE SOLVABLE LIE GROUPS

被引:7
|
作者
Yamada, Takumi [1 ]
机构
[1] Shimane Univ, Dept Math, Nishikawatsu Cho 1060, Matsue, Shimane 6908504, Japan
关键词
Solvable Lie group; lattice; homogeneous space; COMPACT SOLVMANIFOLDS; KAHLER STRUCTURES;
D O I
10.2996/kmj/1467830144
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a unified constructions of lattices in splittable solvable Lie groups.
引用
收藏
页码:378 / 388
页数:11
相关论文
共 50 条
  • [41] Automorphism groups of some variants of lattices
    Ganyushkin, O. G.
    Desiateryk, O. O.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 13 (01) : 142 - 148
  • [42] ON THE LATTICES OF THE ω-FIBERED FORMATIONS OF FINITE GROUPS
    Maksakov, S. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (01): : 258 - 267
  • [43] The strong independence theorem for automorphism groups and congruence lattices of arbitrary lattices
    Grätzer, G
    Wehrung, F
    ADVANCES IN APPLIED MATHEMATICS, 2000, 24 (03) : 181 - 221
  • [44] On automorphism groups of simple arguesian lattices
    Schmidt, ET
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 53 (3-4): : 383 - 387
  • [45] Lattices of dominions in quasivarieties of Abelian groups
    Shakhova S.A.
    Algebra and Logic, 2005, 44 (2) : 132 - 139
  • [46] Unimodular Sasaki and Vaisman Lie groups
    Cortes, Vicente
    Hasegawa, Keizo
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (04)
  • [47] On balanced Hermitian structures on Lie groups
    C. Medori
    A. Tomassini
    L. Ugarte
    Geometriae Dedicata, 2013, 166 : 233 - 250
  • [48] On balanced Hermitian structures on Lie groups
    Medori, C.
    Tomassini, A.
    Ugarte, L.
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 233 - 250
  • [49] Strong Kähler with torsion solvable lie algebras with codimension 2 nilradical
    Brienza, Beatrice
    Fino, Anna
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4705 - 4729
  • [50] On finite subgroups of compact Lie groups and fundamental groups of Riemannian manifolds
    Su, Xiaole
    Wang, Yusheng
    ADVANCES IN GEOMETRY, 2011, 11 (02) : 191 - 199