Relationship of Hippocampal Volume to Amyloid Burden across Diagnostic Stages of Alzheimer's Disease

被引:12
|
作者
Trzepacz, Paula T. [1 ]
Hochstetler, Helen [2 ]
Yu, Peng [3 ]
Castelluccio, Peter [4 ]
Witte, Michael M. [2 ]
Dell'Agnello, Grazia [6 ]
Degenhardt, Elisabeth K. [1 ,5 ]
机构
[1] Indiana Univ Sch Med, Indianapolis, IN 46202 USA
[2] Lilly USA LLC, Lilly Corp Ctr, Indianapolis, IN USA
[3] Lilly Res Labs, Indianapolis, IN USA
[4] Bucher & Christian Consulting Inc, Indianapolis, IN USA
[5] Indiana Univ Hlth, Indiana Univ Hlth Phys Grp, Indianapolis, IN USA
[6] Eli Lilly Italia SpA, Sesto Fiorentino, Italy
基金
美国国家卫生研究院;
关键词
Florbetapir; Amyloid positron emission tomography; Hippocampal volume; Alzheimer's disease; Alzheimer's Disease Neuroimaging Initiative; MILD COGNITIVE IMPAIRMENT; POSITRON-EMISSION-TOMOGRAPHY; FLORBETAPIR F 18; NATIONAL INSTITUTE; BRAIN ATROPHY; MRI; DEMENTIA; PET; ASSOCIATION; DEPOSITION;
D O I
10.1159/000441351
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Aims: To assess how hippocampal volume (HV) from volumetric magnetic resonance imaging (vMRI) is related to the amyloid status at different stages of Alzheimer's disease (AD) and its relevance to patient care. Methods: We evaluated the ability of HV to predict the florbetapir positron emission tomography (PET) amyloid positive/negative status by group in healthy controls (HC, n = 170) and early/late mild cognitive impairment (EMCI, n = 252; LMCI, n = 136), and AD dementia (n = 75) subjects from the Alzheimer's Disease Neuroimaging Initiative Grand Opportunity (ADNI-GO) and ADNI2. Logistic regression analyses, including elastic net classification modeling with 10-fold cross-validation, were used with age and education as covariates. Results: HV predicted amyloid status only in LMCI using either logistic regression [area under the curve (AUC) = 0.71, p < 0.001] or elastic net classification modeling [positive predictive value (PPV) = 72.7%]. In EMCI, age (AUC = 0.70, p < 0.0001) and age and/or education (PPV = 63.1%), but not HV, predicted amyloid status. Conclusion: Using clinical neuroimaging, HV predicted amyloid status only in LMCI, suggesting that HV is not a biomarker surrogate for amyloid PET in clinical applications across the full diagnostic spectrum. (C) 2015 S. Karger AG, Basel
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [21] Neuroimaging of Alzheimer's disease: focus on amyloid and tau PET
    Matsuda, Hiroshi
    Shigemoto, Yoko
    Sato, Noriko
    JAPANESE JOURNAL OF RADIOLOGY, 2019, 37 (11) : 735 - 749
  • [22] Mediation of Reduced Hippocampal Volume by Cerebral Amyloid Angiopathy in Pathologically Confirmed Patients with Alzheimer's Disease
    Nagaraja, Nandakumar
    Wang, Wei-en
    Duara, Ranjan
    DeKosky, Steven T.
    Vaillancourt, David
    JOURNAL OF ALZHEIMERS DISEASE, 2023, 93 (02) : 495 - 507
  • [23] Clinical amyloid imaging in Alzheimer's disease
    Herholz, Karl
    Ebmeier, Klaus
    LANCET NEUROLOGY, 2011, 10 (07) : 667 - 670
  • [24] Longitudinal β-Amyloid Deposition and Hippocampal Volume in Preclinical Alzheimer Disease and Suspected Non-Alzheimer Disease Pathophysiology
    Gordon, Brian A.
    Blazey, Tyler
    Su, Yi
    Fagan, Anne M.
    Holtzman, David M.
    Morris, John C.
    Benzinger, Tammie L. S.
    JAMA NEUROLOGY, 2016, 73 (10) : 1192 - 1200
  • [25] A review of β-amyloid neuroimaging in Alzheimer's disease
    Adlard, Paul A.
    Tran, Bob A.
    Finkelstein, David I.
    Desmond, Patricia M.
    Johnston, Leigh A.
    Bush, Ashley I.
    Egan, Gary F.
    FRONTIERS IN NEUROSCIENCE, 2014, 8
  • [26] Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease
    Teipel, Stefan
    Heinsen, Helmut
    Amaro, Edson, Jr.
    Grinberg, Lea T.
    Krause, Bernd
    Grothe, Michel
    NEUROBIOLOGY OF AGING, 2014, 35 (03) : 482 - 491
  • [27] Aquaporin-4 polymorphisms predict amyloid burden and clinical outcome in the Alzheimer's disease spectrum
    Chandra, Avinash
    Farrell, Chloe
    Wilson, Heather
    Dervenoulas, George
    De Natale, Edoardo Rosario
    Politis, Marios
    NEUROBIOLOGY OF AGING, 2021, 97 : 1 - 9
  • [28] Amyloid Beta-Weighted Cortical Thickness: A New Imaging Biomarker in Alzheimer's Disease
    Kim, Chan Mi
    Hwang, Jihye
    Lee, Jong-Min
    Roh, Jee Hoon
    Lee, Jae-Hong
    Koh, Jae-Young
    CURRENT ALZHEIMER RESEARCH, 2015, 12 (06) : 563 - 571
  • [29] Amyloidogenic Nanoplaques in Cerebrospinal Fluid: Relationship to Amyloid Brain Uptake and Clinical Alzheimer's Disease in a Memory Clinic Cohort
    Aksnes, Mari
    Muller, Ebba Gloersen
    Tiiman, Ann
    Edwin, Trine Holt
    Terenius, Lars
    Revheim, Mona-Elisabeth
    Vukojevic, Vladana
    Bogdanovic, Nenad
    Knapskog, Anne-Brita
    JOURNAL OF ALZHEIMERS DISEASE, 2020, 77 (02) : 831 - 842
  • [30] Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum
    Jones, David T.
    Graff-Radford, Jonathan
    Lowe, Val J.
    Wiste, Heather J.
    Gunter, Jeffrey L.
    Senjem, Matthew L.
    Botha, Hugo
    Kantarci, Kejal
    Boeve, Bradley F.
    Knopman, David S.
    Petersen, Ronald C.
    Jack, Clifford R., Jr.
    CORTEX, 2017, 97 : 143 - 159