A wrapper-based feature selection approach to investigate potential biomarkers for early detection of breast cancer

被引:17
|
作者
Alnowami, Majdi R. [1 ]
Abolaban, Fouad A. [1 ]
Taha, Eslam [2 ]
机构
[1] King Abdulaziz Univ, Dept Nucl Engn, Fac Engn, POB 80204, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Ctr Training & Radiat Prevent, POB 80204, Jeddah 21589, Saudi Arabia
关键词
Breast cancer; Biomarkers; Feature ranking; Classification; LEPTIN; SYSTEM;
D O I
10.1016/j.jrras.2022.01.003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Breast cancer (BC) biomarkers can radically improve the early detection in patients and, as a result, reduce mortality rate, whether for detecting individuals at increased risk of developing cancer or in the screening process. Finding a successful biomarker for breast cancer would be a fast and low-cost first solution to predicting BC, and it could potentially lead to a decline in the global BC mortality rate. However, biomarker exploration translates into the role of feature ranking and selection in machine learning terminology. This study explores the influence of using a particular biomarker or combinations of different biomarkers as predictors for breast cancer. Three different classification algorithms were integrated with a sequential backward selection model: support vector machine (SVM), random forests (RF), and Decision Trees (DTs). The result shows that the optimal set of biomarkers comprises Glucose, Resistin, homo, BMI, and Age using the SVM model. The sensitivity and specificity were 0.94 and 0.90, respectively and the 95% confidence interval for the AUC was [0.89, 0.98]. The result indicates that Glucose, Resistin, homo, BMI, and Age combined can serve as a crucial BC biomarker in BC screening and detection.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条
  • [11] Wrapper-based feature selection: how important is the wrapped classifier?
    Bajer, Drazen
    Dudjak, Mario
    Zoric, Bruno
    PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON SMART SYSTEMS AND TECHNOLOGIES (SST 2020), 2020, : 97 - 105
  • [12] A Novel Wrapper-Based Optimization Algorithm for the Feature Selection and Classification
    Talpur, Noureen
    Abdulkadir, Said Jadid
    Hasan, Mohd Hilmi
    Alhussian, Hitham
    Alwadain, Ayed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5799 - 5820
  • [13] Particle Swarm Optimization: A Wrapper-Based Feature Selection Method for Ransomware Detection and Classification
    Abbasi, Muhammad Shabbir
    Al-Sahaf, Harith
    Welch, Ian
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2020, 2020, 12104 : 181 - 196
  • [14] Stability of Filter- and Wrapper-Based Feature Subset Selection
    Wald, Randall
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 374 - 380
  • [15] A New Wrapper-Based Feature Selection Technique with Fireworks Algorithm for Android Malware Detection
    Guendouz, Mohamed
    Amine, Abdelmalek
    INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI, 2022, 14 (01):
  • [16] Differential Evolution Wrapper-Based Feature Selection Method for Stroke Prediction
    Gudadhe, Santwana
    Thakare, Anuradha
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 191 - 200
  • [17] A Wrapper-based feature selection approach using Bees Algorithm for a wood defect classification system
    Packianather, Michael S.
    Kapoor, Bharat
    2015 10th System of Systems Engineering Conference (SoSE), 2015, : 498 - 503
  • [18] An Empirical Study on Wrapper-based Feature Selection for Software Engineering Data
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    Napolitano, Amri
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 2, 2013, : 84 - 89
  • [19] An improved wrapper-based feature selection method for machinery fault diagnosis
    Hui, Kar Hoou
    Ooi, Ching Sheng
    Lim, Meng Hee
    Leong, Mohd Salman
    Al-Obaidi, Salah Mahdi
    PLOS ONE, 2017, 12 (12):
  • [20] Wrapper-Based Feature Subset Selection for Rapid Image Information Mining
    Durbha, Surya S.
    King, Roger L.
    Younan, Nicolas H.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (01) : 43 - 47